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Scale anomalies in low energy effective theories

I Two simple examples

ĥD = γ0γj p̂j −
λ

r
, ĥS =

p̂2

2m
− λ

r2
. (1)

I More general Hamiltonians have anisotropic scale
invariance.1

I Boundary conditions break scale invariance and lead to
bound states.

I λ > λc :

E = E0e
− 2πn

ν , n ∈ Z . (2)

I Residual discrete scale invariance (DSI): r 7→ e−
2π
ν r .

1Hornreich, Luban, and Shtrikman 1975; Grinstein 1981; Fradkin et al. 2004; Vishwanath, Balents,
and Senthil 2004; Ardonne, Fendley, and Fradkin 2004.
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Dynamical instabilities

I Problem: Consider

ĥS = −
(
d2
r +

λ

r2

)
, r ∈ [0,∞) . (3)

System is dynamically unstable:

En = E0e
− 2πn

ν , E0 < 0 , n ∈ Z and ν ∈ R . (4)

I Partial solution:

ĥ2 =
(
ĥS

)2
=

(
d2
r +

λ

r2

)2

, En = E 2
0 e
− 4πn

ν . (5)

Note ĥS is a conserved charge.
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Everything you need to know if you switch off
now...

1. Every scale covariant, spherically symmetric
Hamiltonian without negative energy DSI can be
embedded in a N = 2 SUSY quantum mechanics.

2. SUSY systems have positive energy spectra therefore no
dynamical instability.

3. Both components of the super-Hamiltonian can have
zero modes.2

4. The landscape of scale covariant Hamiltonians can be
decomposed into equivalence classes through the r = 0
power laws.

2Andrianov and Ioffe 2012.
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Definition of q̂N

I Generic scale covariant, spherically symmetric
Hamiltonian:

ĥ
(b)
N = p̂2N +

2N∑
i=1

λi
r i
d2N−i
r , r ∈ [0,∞) . (6)

I Want to write ĥ
(b)
N = q̂†N q̂N .

I Ability to do this encoded in zero modes of ĥ
(b)
N :

ĥ
(b)
N ψ(r) = 0 ⇒ ψ(r) ∼ r∆ . (7)

I Constraints:

1. ∆i and ∆∗i are both power laws.
2. 2N − 1−∆∗i is a power law if ∆i is.
3. Re[∆i ] 6= N − 1/2.
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A second Hamiltonian (the superpartner)

I Define a new superpartner Hamiltonian: ĥ
(f)
N = q̂N q̂

†
N .

I Power laws of ĥ
(f)
N are

∆i − N if q̂N r
∆ = 0 , (8)

∆i + N if q̂N r
∆ 6= 0 . (9)

I Intertwining relations:

q̂N ĥ
(b)
N = ĥ

(f)
N q̂N , ĥ

(b)
N q̂†N = q̂†N ĥ

(f)
N . (10)

I Problems:

1. Are these Hamiltonians self-adjoint?

2. On what spaces of wavefunctions do ĥ
(b)
N and ĥ

(f)
N

operate?
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N = 2 formalism

I Define formally self-adjoint supercharges:

Q̂+
N =

(
0 q̂†N
q̂N 0

)
, Q̂−N =

(
0 −i q̂†N

i q̂N 0

)
.

I These give the super-Hamiltonian:

ĤN =
(
Q̂+

N

)2
=
(
Q̂−N

)2
=

(
ĥ

(b)
N 0

0 ĥ
(f)
N

)
. (11)

I Now make sure Q̂±N is self-adjoint:∫ ∞
r=L

dr

[
~Φ†(r)Q̂+

N
~Ψ(r)−

(
Q̂+

N
~Φ(r)

)†
~Ψ(r)

]
. (12)
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N = 1

I With a lot of redefinitions we write the boundary term
as:

i

[(
~φ+
Q+

N

(L)
)† (

~ψ+
Q+

N

(L)
)
−
(
~φ−
Q+

N

(L)
)† (

~ψ−
Q+

N

(L)
)]

.

I Therefore generic self-adjoint boundary conditions are:

~ψ+
Q+

N

(L) = UN
~ψ−
Q+

N

(L) . (13)

I This ensures N = 1. N = 2 requires Q̂−N is self-adjoint
and

Q̂+
N Q̂−N , Q̂−N Q̂+

N , (14)

are well-defined.3

3Falomir and Pisani 2005.
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N = 2

I Use a trick:

Q̂−N = e
iπ
4
σ3Q̂+

N e−
iπ
4
σ3 , σ3 =

(
1 0
0 −1

)
.

I This leads to a restriction on the unitary parameter:

U2
N = 1N . (15)

I Now we have N = 2 and boundary conditions can be
separated:

(1N − UN) ~ψ(b)(L) = 0 , (16)

(1N + UN)P(f)
~ψ(f)(L) = 0 . (17)

I L = 0 essentially the same.
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The inverse square potential

I Bosonic hamiltonian

ĥ
(b)
S = −

(
d2
r +

λ2

r2

)
. (18)

I The superpartner coupling:

λ̃2 = (λ2 − 1) + 2

(
1

4
− λ2

)1/2

. (19)

I U1 = ±1 and

U1 = +1 U1 = −1

λ2 < 1/4 no zero modes ĥ
(f)
N

has zero modes

λ2 < −3/4 ĥ
(b)
N

has zero modes ĥ
(f)
N

has zero modes
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Square of the inverse square potential

I λ2 > 1/4 then ĥS has
negative energy DSI and
cannot be
supersymmetrized.

I Can supersymmetrize the
square:

Ĥ2 =

(
ĥ2
S 0

0 ĥ2
S

)
.

I U2 = ±12 no bound
states.

I No zero modes.

U2 =
-1 0

0 1

1 2 3 4 5
λ20

5

10

15

20
-ln(ϵ)

ĥ
(b)
2 = ĥ

(f)
2 = ĥ2

S =

(
d2
r +

λ2

r2

)2
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The multiplicity of superpartner Hamiltonians

I Can permute roots of ĥ
(b)
N without affecting operator:

ĥ
(b)
N = (−1)ND̂σ

2N . . . D̂
σ
1 , (20)

D̂σ
k = i

(
dr −

∆σ(k) − k + 1

r

)
, (21)

where σ is a permutation.

I q̂σN can be affected by permutation. Must maintain

∆σ(2N−i+1) = 2N − 1−∆∗σ(i) . (22)

I Many superpartners:

ĥ
(f)
N = q̂σN (q̂σN)† . (23)
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Heads, petals and flowers

I Consider the following
procedure:

1. Head: ĥ
(b)
N = q̂†N q̂N .

2. Petals: ĥ
(f)
N = q̂N q̂

†
N .

3. Permute ∆i in q̂N and
q̂†N .

4. Redefine ĥ
(b)
N := ĥ

(f)
N .

Repeat.

I Can arrange for N power
laws ∆i + miN, mi ∈ Z
with other N given by
2N − 1−∆∗i .

N = 2
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Thanks for listening!

Further reading
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