Supersymmetric stabilisation of scale invariant quantum theories

Daniel K. Brattan¹

¹ICTS, USTC, Hefei, China.

SUSY scale invariance

A brief review of scale invariance in quantum mechanics

Supersymmetry

Factorisable scale covariant Hamiltonians

Cut-offs and self-adjoint boundary conditions Examples

Equivalence classes in the landscape

danny.brattan@gmail.com

Scale anomalies in low energy effective theories

Two simple examples

$$\hat{h}_D = \gamma^0 \gamma^j \hat{p}_j - \frac{\lambda}{r} , \qquad \hat{h}_S = \frac{\hat{p}^2}{2m} - \frac{\lambda}{r^2} .$$
 (1)

- More general Hamiltonians have anisotropic scale invariance.¹
- Boundary conditions break scale invariance and lead to bound states.
- $\lambda > \lambda_c$:

$$E = E_0 e^{-\frac{2\pi n}{\nu}}, \qquad n \in \mathbb{Z}.$$

• Residual discrete scale invariance (DSI): $r \mapsto e^{-\frac{2\pi}{\nu}}r$.

SUSY scale invariance

A brief review of scale invariance in quantum mechanics

Supersymmetry

actorisable scale covariant Hamiltonians

Cut-offs and self-adjoint boundary conditions Examples

¹Hornreich, Luban, and Shtrikman 1975; Grinstein 1981; Fradkin et al. 2004; Vishwanath, Balents, and Senthil 2004; Ardonne, Fendley, and Fradkin 2004.

Dynamical instabilities

Problem: Consider

$$\hat{h}_{\mathcal{S}} = -\left(d_r^2 + \frac{\lambda}{r^2}\right) \ , \qquad r \in [0,\infty) \ .$$
 (3)

System is dynamically unstable:

$$E_n = E_0 e^{-\frac{2\pi n}{\nu}}, \quad E_0 < 0, n \in \mathbb{Z} \text{ and } \nu \in \mathbb{R}.$$
 (4)

Partial solution:

$$\hat{h}_2 = \left(\hat{h}_S\right)^2 = \left(d_r^2 + \frac{\lambda}{r^2}\right)^2$$
, $E_n = E_0^2 e^{-\frac{4\pi n}{\nu}}$. (5)

Note \hat{h}_S is a conserved charge.

SUSY scale invariance

A brief review of scale invariance in quantum mechanics

Supersymmetry

actorisable scale covariant lamiltonians

Cut-offs and self-adjoint boundary conditions Examples

Everything you need to know if you switch off now...

- 1. Every scale covariant, spherically symmetric Hamiltonian without negative energy DSI can be embedded in a $\mathcal{N} = 2$ SUSY quantum mechanics.
- 2. SUSY systems have positive energy spectra therefore no dynamical instability.
- 3. Both components of the super-Hamiltonian can have zero modes.²
- The landscape of scale covariant Hamiltonians can be decomposed into equivalence classes through the r = 0 power laws.

A brief review of scale invariance in quantum mechanics

Supersymmetry

Factorisable scale covariant Hamiltonians

Cut-offs and self-adjoint boundary conditions Examples

SUSY scale invariance

²Andrianov and loffe 2012.

Definition of \hat{q}_N

 Generic scale covariant, spherically symmetric Hamiltonian:

$$\hat{h}_{N}^{(\mathrm{b})} = \hat{\rho}^{2N} + \sum_{i=1}^{2N} \frac{\lambda_{i}}{r^{i}} d_{r}^{2N-i} , \qquad r \in [0,\infty) .$$
 (6)

• Want to write
$$\hat{h}_N^{(\mathrm{b})} = \hat{q}_N^{\dagger} \hat{q}_N$$
.

• Ability to do this encoded in zero modes of $\hat{h}_N^{(b)}$:

$$\hat{h}_N^{(\mathrm{b})}\psi(r) = 0 \qquad \Rightarrow \qquad \psi(r) \sim r^{\Delta} \ .$$
 (7)

Constraints:

- 1. Δ_i and Δ_i^* are both power laws.
- 2. $2N 1 \Delta_i^*$ is a power law if Δ_i is.
- 3. $\operatorname{Re}[\Delta_i] \neq N 1/2$.

SUSY scale invariance

A brief review of scale invariance in quantum mechanics

Supersymmetry

Factorisable scale covariant Hamiltonians

Cut-offs and self-adjoint boundary conditions Examples

A second Hamiltonian (the superpartner)

$$\begin{aligned} \Delta_i - N & \text{if } \hat{q}_N r^\Delta = 0 , \qquad (8) \\ \Delta_i + N & \text{if } \hat{q}_N r^\Delta \neq 0 . \end{aligned}$$

Intertwining relations:

$$\hat{q}_N \hat{h}_N^{(\mathrm{b})} = \hat{h}_N^{(\mathrm{f})} \hat{q}_N , \qquad \hat{h}_N^{(\mathrm{b})} \hat{q}_N^{\dagger} = \hat{q}_N^{\dagger} \hat{h}_N^{(\mathrm{f})} .$$
 (10)

- Problems:
 - 1. Are these Hamiltonians self-adjoint?
 - 2. On what spaces of wavefunctions do $\hat{h}_N^{(\mathrm{b})}$ and $\hat{h}_N^{(\mathrm{f})}$ operate?

SUSY scale invariance

A brief review of scale invariance in quantum mechanics

Supersymmetry

Factorisable scale covariant Hamiltonians

Cut-offs and self-adjoint boundary conditions Examples

$\mathcal{N}=2 \text{ formalism}$

Define formally self-adjoint supercharges:

$$\hat{Q}^+_N = \left(egin{array}{cc} 0 & \hat{q}^\dagger_N \ \hat{q}_N & 0 \end{array}
ight) \;, \;\; \hat{Q}^-_N = \left(egin{array}{cc} 0 & -i \hat{q}^\dagger_N \ i \hat{q}_N & 0 \end{array}
ight) \;.$$

These give the super-Hamiltonian:

$$\hat{H}_N = \left(\hat{Q}_N^+\right)^2 = \left(\hat{Q}_N^-\right)^2 = \left(\begin{array}{cc}\hat{h}_N^{(\mathrm{b})} & 0\\ 0 & \hat{h}_N^{(\mathrm{f})}\end{array}\right) .$$
(11)

• Now make sure \hat{Q}_N^{\pm} is self-adjoint:

$$\int_{r=L}^{\infty} dr \left[\vec{\Phi}^{\dagger}(r) \hat{Q}_{N}^{\dagger} \vec{\Psi}(r) - \left(\hat{Q}_{N}^{\dagger} \vec{\Phi}(r) \right)^{\dagger} \vec{\Psi}(r) \right] .$$
(12)

SUSY scale invariance

A brief review of scale invariance in quantum mechanics

Supersymmetry

Factorisable scale covariant Hamiltonians

Cut-offs and self-adjoint boundary conditions Examples

 $\mathcal{N}=1$

With a lot of redefinitions we write the boundary term as:

$$i\left[\left(\vec{\phi}_{Q_{N}^{+}}^{+}(L)\right)^{\dagger}\left(\vec{\psi}_{Q_{N}^{+}}^{+}(L)\right)-\left(\vec{\phi}_{Q_{N}^{+}}^{-}(L)\right)^{\dagger}\left(\vec{\psi}_{Q_{N}^{+}}^{-}(L)\right)\right]$$

Therefore generic self-adjoint boundary conditions are:

$$\vec{\psi}_{Q_N^+}^+(L) = U_N \vec{\psi}_{Q_N^+}^-(L) .$$
(13)

▶ This ensures $\mathcal{N} = 1$. $\mathcal{N} = 2$ requires \hat{Q}_N^- is self-adjoint and

$$\hat{Q}_{N}^{+}\hat{Q}_{N}^{-}, \qquad \hat{Q}_{N}^{-}\hat{Q}_{N}^{+}, \qquad (14)$$

are well-defined.³

SUSY scale invariance

A brief review of scale invariance in quantum mechanics

Supersymmetry

actorisable scale covariant lamiltonians

Cut-offs and self-adjoint boundary conditions Examples

³Falomir and Pisani 2005.

► Use a trick:

$$\hat{Q}_N^-=e^{rac{i\pi}{4}\sigma_3}\hat{Q}_N^+e^{-rac{i\pi}{4}\sigma_3}\,,\qquad \sigma_3=\left(egin{array}{cc} 1&0\\ 0&-1\end{array}
ight)\,.$$

This leads to a restriction on the unitary parameter:

$$U_N^2 = \mathbb{1}_N . \tag{15}$$

Now we have N = 2 and boundary conditions can be separated:

$$(\mathbb{1}_N - U_N) \, \vec{\psi}_{(b)}(L) = 0 , \qquad (16)$$

$$(\mathbb{1}_N + U_N) P_{(f)} \vec{\psi}_{(f)}(L) = 0.$$
 (17)

• L = 0 essentially the same.

SUSY scale invariance

A brief review of scale invariance in quantum mechanics

Supersymmetry

Factorisable scale covariant Hamiltonians

Cut-offs and self-adjoint boundary conditions Examples

The inverse square potential

Bosonic hamiltonian

$$\hat{h}^{(\mathrm{b})}_{\mathcal{S}} = -\left(d^2_r + rac{\lambda_2}{r^2}
ight) \; .$$

The superpartner coupling:

$$\tilde{\lambda}_2 = (\lambda_2 - 1) + 2\left(\frac{1}{4} - \lambda_2\right)^{1/2}$$
. (19)

• $U_1 = \pm 1$ and

	$U_1 = +1$	$U_1 = -1$
$\lambda_2 < 1/4$	no zero modes	$\hat{h}_N^{(f)}$ has zero modes
$\lambda_2 < -3/4$	$\hat{h}_N^{(\mathrm{b})}$ has zero modes	$\hat{h}_N^{(f)}$ has zero modes

SUSY scale invariance

A brief review of scale invariance in quantum mechanics

Supersymmetry

actorisable scale covariant łamiltonians

ut-offs and self-adjoint oundary conditions

Examples

(18)

Square of the inverse square potential

 $-\ln(\epsilon)$

- λ₂ > 1/4 then ĥ_S has negative energy DSI and cannot be supersymmetrized.
- Can supersymmetrize the square:

$$\hat{H}_2=\left(egin{array}{cc} \hat{h}_5^2 & 0 \ 0 & \hat{h}_5^2 \end{array}
ight)$$

- ► U₂ = ±1₂ no bound states.
- No zero modes.

SUSY scale invariance

A brief review of scale invariance in quantum mechanics

Supersymmetry

Factorisable scale covariant Hamiltonians

Cut-offs and self-adjoint boundary conditions

Examples

The multiplicity of superpartner Hamiltonians

• Can permute roots of $\hat{h}_N^{(\mathrm{b})}$ without affecting operator:

$$\hat{h}_{N}^{(b)} = (-1)^{N} \hat{D}_{2N}^{\sigma} \dots \hat{D}_{1}^{\sigma}, \qquad (20)$$

$$\hat{D}_{k}^{\sigma} = i\left(d_{r} - \frac{\Delta_{\sigma(k)} - k + 1}{r}\right) , \qquad (21)$$

where σ is a permutation.

• \hat{q}^{σ}_{N} can be affected by permutation. Must maintain

$$\Delta_{\sigma(2N-i+1)} = 2N - 1 - \Delta^*_{\sigma(i)} . \qquad (22)$$

Many superpartners:

$$\hat{h}_{N}^{(\mathrm{f})} = \hat{q}_{N}^{\sigma} \left(\hat{q}_{N}^{\sigma} \right)^{\dagger} . \qquad (23)$$

SUSY scale invariance

A brief review of scale invariance in quantum mechanics

Supersymmetry

actorisable scale covariant Iamiltonians

Cut-offs and self-adjoint boundary conditions Examples

Heads, petals and flowers

- Consider the following procedure:
 - 1. Head: $\hat{h}_{N}^{(b)} = \hat{q}_{N}^{\dagger} \hat{q}_{N}$.
 - 2. Petals: $\hat{h}_N^{(\mathrm{f})} = \hat{q}_N \hat{q}_N^{\dagger}$.
 - 3. Permute Δ_i in \hat{q}_N and \hat{q}_N^{\dagger} .
 - 4. Redefine $\hat{h}_N^{(\mathrm{b})} := \hat{h}_N^{(\mathrm{f})}$. Repeat.
- Can arrange for N power laws $\Delta_i + m_i N$, $m_i \in \mathbb{Z}$ with other N given by $2N - 1 - \Delta_i^*$.

N = 2

SUSY scale invariance

A brief review of scale invariance in quantum mechanics

Supersymmetry

actorisable scale covariant Iamiltonians

Cut-offs and self-adjoint oundary conditions Examples

Thanks for listening!

Further reading

SUSY scale invariance

A brief review of scale invariance in quantum mechanics

Supersymmetry

Factorisable scale covariant Hamiltonians

Cut-offs and self-adjoint boundary conditions Examples