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Introduction

Canonical ensemble

Grand canonical ensemble

Summary and Disscusion



Introduction: Partition function and

Euclidean path integral

◮ Partition function (canonical ensemble):

Z = Tr exp{−βH} =
∑

n

〈n| exp{−βH}|n〉 W = − lnZ

◮ In Path integral language:
Minkowski:

〈j| exp{−itH}|i〉 =
∫ φt=φj

φ0=φi

[dφ] exp{i
∫

dτL}

Euclideanize: t → −it, and periodic boundary condition
i = j = n with period β, trace:

Z =
∑

n

〈n| exp{−βH}|n〉 =
∫

φ0=φβ

[dφ] exp{
∫

dτLE}



◮ Define Euclidean action: IE = −
∫

dτLE

◮ To the leading order, we use the classical solution to calculate
the classical action: Z ≈ e−IE and W = − lnZ ≈ IE .

◮ For canonical ensembles, W = βF , F is Helmholz free energy.
E = 〈H〉 = ∂W

∂β |V,N .

◮ For grand canonical ensemble:

Z = Tr exp{−β(H − µN} =
∑

n

〈n| exp{−β(H − µN)}|n〉

W = − lnZ = β(F − µN) = βG ≈ IE

G is the Gibbs free energy.

◮ These can be used to discuss the thermodynamics of the
spacetime geometry such as black hole. We will use this
formalism to discuss the thermodynamics of the black branes:
Euclideanize the metric and compactify the time direction.
Use the classical action to find the leading order
approximation of the partition function.



Black p-brane without dilaton

Solution to D-dimensional spacetime gravity with a p+ 1 form
gauge field:

I =
1

2κ2

∫

dDx
√−g

[

R− 1

2(d+ 1)!
F 2
d+1

]

,



Black p-brane without dilaton

◮ Solution:

ds2 = △+△
−

d
D−2

− dt2 +△
d̃

D−2

− dxidxi + (△+△−)
−1dρ2 + ρ2dΩ2

d̃+1
,

At1···p =

[

(

r−
r+

)d̃/2

−
(

r−r+
ρ2

)d̃/2
]

,

Fρt1···p ≡ ∂ρAt1···p = d̃
(r−r+)

d̃/2

ρd̃+1
,

where △± = 1− rd̃±/ρ
d̃ and dd̃

D−2
= 2.

◮ Asymptotic flat.

◮ isometry : Before compactification:
R× E(d− 1)× SO(d̃+ 2), d = 1 + p,D = d+ d̃+ 2

◮ horizon: ρ = r±; Curvature singularity at ρ = 0

◮ r± = 0, flat. r+ = r− 6= 0, extremal.



Black p-brane without dilaton

◮ Charge :

Qd =
Ωd̃+1√
2κ

d̃(r+r−)
d̃/2,

If we define Q∗
d =

(√
2κQd

Ωd̃+1d̃

)1/d̃

, r− =
Q∗

d
2

r+
not an independent

variable. r± = 0 ⇒ Q = 0, “hot flat space”, no charge.

◮ Temperature seen from infinity: T ∗ = 1/β∗

β∗ =
4πr+

d̃

(

1− rd̃−

rd̃+

)− 1
2
+ 1

d̃

,

Local temperature at ρ: T = 1/β,

β = △1/2
+ △

− d
2(D−2)

− β∗ = △1/2
+ △− 1

d̃
−

4πr+

d̃

(

1− rd̃−

rd̃+

)− 1
2
+ 1

d̃

,



General strategy

◮ We put the black p-brane inside a spherical cavity: outside the
boundary is flat space in hot equilibrium (hot flat space). The
black brane and the heat bath are in a thermal equilibrium.
Two kinds of system:

◮ Canonical ensemble: fix temperature at the boundary and Q
charge.

◮ Grand canonical ensemble: fix temperature and A potential at
the boundary.

◮ Path integral of Euclidean action with Boundary terms =
Partition function. At leading order: e−IE ≈ Z
The period of the Euclidean time =β∗= 1/(Temperature seen
from infinity).



Canonical ensemble:boundary conditions

Boundary terms:

◮ Gravity sector:

IE(g) = − 1

2κ2

∫

M
dDx

√
gE RE+

1

κ2

∫

∂M
dD−1x

√
γ (K −K0),

K is the trace of the extrinsic curvature at the boundary. K0

is the one for the flat metric.

◮ Form field sector:

ICE (F ) =
1

2κ2
1

2(d+ 1)!

∫

M
dDx

√
gEF

2
d+1

− 1

2κ2
1

d!

∫

∂M
dD−1x

√
γ nµ F

µµ1µ2···µdAµ1µ2···µd
,



Canonical ensemble:boundary conditions

◮ Matching with the flat metric at the boundary:

ds2 = dτ2 + dx̄idx̄i + ρ2dΩ2
d̃+1

, (ρ ≥ 0)

◮ τ has the period of β ⇔ the same temperature as the black
brane

◮ the same volume: x̄i = △
d̃

2(D−2)

− xi, ⇒
∫

dpx̄i =
∫

dpxi
√

det gij ,
◮ the radii for the (d̃+ 1)-sphere in both cases is the same



Canonical ensemble: Black p-brane partition

function

Substitute the solution into the action we find the partition
function:

− lnZ = IE = −
βVpΩd̃+1

2κ2
ρd̃

[

2

(△+

△−

)1/2

+d̃

(△−
△+

)1/2

+ d̃(△+△−)
1/2 − 2(d̃+ 1)

]

.

◮ From the definition of the partition function for canonical
ensemble: free energy F = − lnZ/β = IE/β



Canonical ensemble: Black p-brane partition

function

◮ Since Z = Tre−βH , E = −TrHe−βH

Tre−βH = −
(

∂ lnZ
∂β

)

Vp,Q
We find

E(ρ) = −
VpΩd̃+1

2κ2
ρd̃

[

(d̃+ 2)

(△+

△−

)1/2

+ d̃(△+△−)1/2 − 2(d̃+ 1)

]

,

which approaches the ADM mass at ρ → ∞. From
S = βE − F we have entropy:

S =
4π Vp△

−1/2− d
2(D−2)

− Ωd̃+1

2κ2
rd̃+1
+

(

1−
rd̃−

rd̃+

)1− d̃
2(D−2)

.

◮ Another way: Geometry determines entropy S = A/4 then
one finds E. We have the same results.



Canonical ensemble: Black p-brane partition

function

IE = βE − S

= −
βVpΩd̃+1

2κ2
ρ
d̃

[

(d̃+ 2)

(

△+

△−

)1/2

+ d̃(△+△−)
1/2

− 2(d̃+ 1)

]

−
4π Vp△

−1/2− d
2(D−2)

− Ωd̃+1

2κ2
r
d̃+1
+

(

1−
rd̃−

rd̃+

)1− d̃
2(D−2)

.

◮ Generalize to nonequilibrium: We fix the T (β), Vp on the
boundary and Q, and choose arbituary geometric parameters
r+ not satisfying the equilibrum temperature equation β(r+).
These determine the E and entropy S and hence free energy
F . Notice r− = r−(r+, Q)is not an independent variable.

◮ The equilibrium should be at the point:
(

∂F
∂r+

)

Vp,Q,β
= 0, we

can solve β(r+). The result should be the same β we used in
equilibrium.



Canonical ensemble: Black p-brane partition

function

(

∂F

∂r+

)

Vp,Q,β

∼

[

d̃+ 2 +

(

d̃

2
−

d̃+ 2

2△−

)

(

1−
rd̃−

rd̃+

)]

×






βd̃− 4πr+△

1/2
+ △

− d
2(D−2)

−

(

1−
rd̃−

rd̃+

)− d̃
2(D−2)






= 0,

⇒ β =
4πr+△

1/2
+ △

− d
2(D−2)

−

d̃

(

1−
rd̃
−

rd̃+

) d̃
2(D−2)

= △
1/2
+ △

− d
2(D−2)

− β
∗
,

The same as before.



Canonical ensemble: stability condition
We define

x =

(

r+

ρ

)d̃

≤ 1, b̄ =
β

4πρ
, q =

(

Q∗
d

ρ

)d̃

,

We have r−/r+ = Q∗
d
2/r2+ < 1 ⇒ x > |q|

◮

∂ĨE

∂x
= f(x, q)

[

b̄− b(x, q)
]

where f(x, q) > 0.
◮ At the equilibrium

b̄ = b(x, q) =
1

d̃

x1/d̃(1− x)1/2

(

1− q2

x2

)
d̃−2

2d̃
(

1− q2

x

) 1
d̃

◮
∂2 ĨE
∂x2 ∼ − ∂b

∂x

∂b

∂x
> 0,

∂2ĨE

∂x2
< 0, local maximum, unstable

∂b

∂x
< 0,

∂2ĨE

∂x2
> 0, local minimum, locally stable



Chargeless Case

b(x) =
1

d̃
x
1/d̃(1− x)1/2,

0 x1 xmaxxg x2 1 x

b̄

bmax

b(x)

◮ bmax = 1√
2d̃

(

2
d̃+2

)1/2+1/d̃
, at xmax = 2

d̃+2
.

◮ b̄ > bmax, no black brane, there is only “the hot empty space”.
◮ 0 < b̄ < bmax there are two black brane solutions. The larger

one has ∂b/∂x < 0, locally stable; the smaller one unstable.

◮ the “hot empty space” has IE = 0, globaly stable black brane

IE < 0 ⇒ x̄ > xg = 4(d̃+1)

(d̃+2)2
> xmax. b̄ < bg

◮ For bg < b̄ < bmax, the black brane will tunnel to “hot flat
space”.



Charged case

Analyse ∂b/∂x = 0,

∂b

∂x
∼ −(1 +

d̃

2
)x4 − [1 + (2 +

d̃

2
)q2]x3 − 3q2(

d̃

2
− 1)x2

+q2[d̃− 1 +
3d̃

2
q2]x− d̃q4

= 0

The discriminant:

△(q, d̃) =
(1− q2)3q6

16

[

(

− 3d̃(4 + d̃)q2 + 4(d̃− 1)
)3 − 108d̃2(2 + d̃− d̃2)2q2(1− q2)

]

◮ q = qc, ∆ = 0, two solutions merge,
critial point.

◮ q < qc, ∆ > 0, two stationary points.

◮ q > qc, ∆ < 0, no stationary point. -0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  0.2  0.4  0.6  0.8  1



Charged case:d̃ > 2

there is a critical point qc

◮ q > qc, there is no solution for ∂b/∂x = 0, ∂b/∂x < 0 for all
|q| < x < 1

bq

b̄

q x̄ 1
x

Figure: b decreases monotonically with x when |q| < x < 1.

There is only one stable black brane solution at all temperature.



◮ q = qc there is only one point where ∂b/∂x = 0 or the two
extrema merge. xmin = xmax = xc This is a critical point with
∂2b/∂x2 = 0.

bq

bc

q xc 1
x

◮ At the critial point, the reduced specific heat

C̃v = T
∂S̃

∂T
= τ

∂S̃

∂τ

=
1

3

∂S̃

∂x

∣

∣

∣

∣

∣

x=xc







1

− 1
3!

∂3b
∂x3

∣

∣

∣

x=xc

bc







1/3

(τ − τc)
−2/3 + · · · .

Therefore, the critical exponent α is −2/3.



Charged case:d̃ > 2

◮ when q < qc

bq

bmax

b̄

bmin

q xminxmax 1
x

x1 x2 x3

Figure: The typical behavior of b vs x when there is a phase transition.

◮ 0 < b̄ < bmin there is one stable solution

◮ bmin < b̄ < bmax there are three solutions, the largest and
smallest are locally stable solution and the middle one is
unstable

◮ bmax < b̄ there is one stable solution



Charged case:d̃ > 2

q < qc
◮ bmin < b̄ < bmax, compare the free energies of the two local

minima: There is a phase transation point bt,
◮ for b < bt, I1 > I3, the larger one is globally stable.
◮ for b > bt, I1 < I3, the smaller one is globally stable.
◮ at b = bt, I1 = I3, the larger one and the smaller one could

coexist. This is a first order phase transation.
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Charged case:d̃ = 1

b = x(1− x)1/2
(

1− q2

x2

)

1
2
(

1− q2

x

)−1

.

∂b(x, q)

∂x
∼ 3

2
x4 −

(

1 +
5

2
q2
)

x3 +
3

2
q2x2 +

3

2
q4 x− q4 = 0.

△(q, 1) =
(15)3(q2 − 1)3q8

16

[

q4 − 16

125
q2 +

16

125

]

< 0,

◮ b(q) = b(1) = 0, ∆ < 0, one maximum in
q < x < 1.

◮ 0 < b < b(xmax), two black brane:
smaller— unstable, larger—stable.

bq

bmax

b̄

q xs xmaxxl 1
x



Charged case:d̃ = 2

bq

b̄

q x̄ 1

x

q > qc

bc

b̄

q x̄ 1

q = qc

bmax

b̄

q xs x+ xl 1

q < qc

b(x) =
1

2
x
1/2(1− x)1/2

(

1−
q2

x

)−1/2

.

solution to ∂q(x)
∂x = 0, x± = 1

4

[

1 + 3q2 ±
√
B
]

, where

B = (1− q2)(1− 9q2)

◮ q ≥ qc = 1/3, no real solution.∂q(x)∂x ≤ 0, one stable black
brane for 0 < b̄ < b(q).

◮ q < qc = 1/3: (1) 0 < b < b(q), one stable black brane.
(2)b(q) < b < b(x+), one small unstable , the other larger
stable.



Black p-brane with dilaton

Solution to D-dimensional spacetime gravity with a dilaton field
and a p+ 1 form gauge field:

IE = IE(g) + IE(φ) + IE(F ),

IE(g) = − 1

2κ2

∫

M
dDx

√
gE RE +

1

κ2

∫

∂M
dD−1x

√
γ (K −K0) ,

IE(φ) = − 1

2κ2

∫

M
dDx

√
gE

(

−1

2
(∂φ)2

)

,

ICE (F ) =
1

2κ2
1

2(d+ 1)!

∫

M
dDx

√
gE ea(d)φ F 2

d+1

− 1

2κ2
1

d!

∫

∂M
dD−1x

√
γ nµ e

a(d)φ Fµµ1µ2···µdAµ1µ2···µd
,



Black brane solution

ds2 = △+△
− d

D−2
− dt2 +△

d̃
D−2
− dxidxi +△−1

+ △
a2

2d̃
−1

− dρ2 + ρ2△
a2

2d̃
− Ω2

d̃+1
,

At1···p = −ie−aφ0/2

[

(

r−
r+

)d̃/2

−
(

r−r+

ρ2

)d̃/2
]

,

Fρt1···p ≡ ∂ρAt1···p = −ie−aφ0/2 d̃
(r−r+)d̃/2

ρd̃+1
,

e−2(φ−φ0) = △a
− ,

where φ0 = φ(∞), and a2 = 4− 2dd̃
(d+d̃)

.

◮ Physical radius:ρ̄ = ρ△
α2

4d̃
− ,

◮ Define r̄± = r±△
α2

4d̃
− , △± = 1− rd̃±

ρd̃
= 1− r̄d̃±

ρ̄d̃
.

◮ Temperature:β∗ =
4πr+

d̃

(

1− rd̃−

rd̃+

)

1
d̃
− 1

2

,

β = △1/2
+ △

− d

2(d+d̃)

− β∗ = △1/2
+ △−1/d̃

−
4πr̄+

d̃

(

1−
r̄d̃−

r̄d̃+

)

1
d̃
− 1

2

The same as before except r± → r̄±, ρ → ρ̄.



◮ We fix φ at the boundary φρ.
◮ Charge:

Q =
i√
2κ

∫

ea(d)φF r01···(d−1)√gEdxd̃−1

=
d̃√
2κ

eaφρ/2△
a2

4
− (r+r−)d̃/2Ωd̃+1

We define (Q∗)d̃ = e−aφρ/2
√
2κ

d̃Ω
d̃

Q = (r̄+r̄−)d̃/2

The same form as before except r± → r̄±.

◮ Euclidean action:

IE = −
βVpΩd̃+1

2κ2
ρ̄d̃

[

2

(△+

△−

)1/2

+ d̃

(△−
△+

)1/2

+ d̃(△+△−)1/2 − 2(d̃+ 1)

]

The same form as the nondilaton case except r± → r̄±,
ρ → ρ̄.



◮ We define: x =
(

r̄+
ρ̄

)d̃
≤ 1, b = β

4πρ̄
, q =

(

Q∗
d
ρ̄

)d̃
, then

b =
1

d̃
x1/d̃(1− x)1/2

(

1− q2

x2

)
1
d̃
− 1

2
(

1− q2

x

)− 1
d

.

They are exactly the same equations as in the nondilaton
case. All the discussions in the nondilaton case can be applied
here with no change only with new definition of variables.



Summary of canonical ensemble

◮ q = 0,
◮ T < Tmin, (b > bmax) there is no black brane solution.
◮ Tmin < T < Tg there are two solution: smaller—unstable, larger —locally

stable but not globally stable. Tunnel to “hot flat space”.

◮ Tg < T , there are two solutions: smaller one —unstable, larger one

—globally stable. T larger→ r+ larger.

◮ q > 0, d̃ > 2
◮ q ≥ qc, one globally stable black brane. q = qc, there is a critical point.
◮ q < qc, T < Tmin or T > Tmax, there is one globally stable black brane.

T greater → r+ larger.

◮ q < qc, Tmin < T < Tmax: three solutions, the largest and the smallest

ones—locally stable, the middle one unstable. At bt: A first order

transation between the largest one and the smallest one.

◮ q > 0, d̃ = 1, T > Tmin , there are two solutions: smaller one —unstable,

larger one — stable.

◮ d̃ = 2,
◮ q > qc, T > Tc : one stable solution. T increase → r+ larger.

◮ 0 < q < qc, Tmin < T < T (q): two solutions: smaller—unstable, larger

— stable; T (q) < T : one stable solution.



Grand canonical ensemble

Fix temperature T , volume Vp, ρB, and potential A at the
boundary

◮ Fix the potential in the local inertial frame:

A0̂1̂···p̂ = (△+△−)−1/2A01···p = e−aφρ

(

r−
r+

)d̃/2 (△+

△−

)1/2

≡
√
2κΦ,

◮ Subtract the boundary term of the canonical action⇔
Legendre transformation.

IGC
E = ICE +

1

2κ2

1

d!

∫

∂M
dD−1x

√
γ nµ e−a(d)φ Fµµ1µ2···µdAµ1µ2···µd

= ICE − βVpQdΦ



Equilibrium condition

Equilibrium: ∂IE
∂r+

= 0; ∂IE
∂Q = 0 ⇒ β,Φ. Define

Q∗
d =

(√
2κQd

Ω
d̃+1

d̃
eaφ̄/2

) 1
d̃
, x =

(

r̄+
ρ̄B

)d̃
, b̄ = β

4πρ̄B
, q =

(

Q∗
d

ρ̄B

)d̃
, ϕ̄ =

√
2κe−aφ̄/2Φ

◮ At the equilibrium, temperature and Φ:
b̄ = b(x, q), ϕ̄ = ϕ(x, q) where we have defined

b(x, q) =
1

d̃

x
1
d̃ (1− x)

1
2

(

1− q2

x2

) 1
2
− 1

d̃

(

1− q2

x

) 1
d̃

, ϕ(x, q) =
q

x

(

1− x

1− q2

x

) 1
2

.

◮ Solve ϕ̄ = ϕ(x, q) and reformulate b(x, q) in x and ϕ̄:

q2

x2
=

ϕ̄2

1− (1− ϕ̄2)x
, b̄ = bϕ̄(x) ≡ b(x, q) =

x
1
d̃
[

1−
(

1− ϕ̄2
)

x
] 1
2

d̃ (1− ϕ̄2)
1
2
− 1

d̃

,

◮ For a grand canonical ensembel, we fix b̄, Vp, ϕ̄: Given b̄ and
ϕ̄ we can solve x from the second eq. and this determines q in
the first eq. So we only need to consider when there is a
solution of the second equation.



Stability analysis

◮ stability condition: Define Ĩij ≡ ∂2ĨE(x,q)
∂zi∂zj

, z1 = q, z2 = x.

positive eigenvalues ⇔ Ĩqq > 0,
Ĩqq

det Ĩij
> 0

Equivalent to

dbϕ̄(x)

dx
=

bϕ̄(x)
[

2− (d̃+ 2)x(1− ϕ̄2)
]

2d̃ x [1− x(1− ϕ̄2)]
< 0 ⇒ 2− (2 + d̃)x̄(1− ϕ̄2) < 0.



Phase structure

Equilibrium condition:

b̄ =
x

1
d̃ [1−(1−ϕ̄2)x]

1
2

d̃(1−ϕ̄2)
1
2− 1

d̃

, b(0) = 0, bϕ̄(1) =
ϕ̄

d̃(1−ϕ̄2)
1
2− 1

d̃

,

Stability condition:
dbϕ̄(x)
dx < 0 ⇒ 2− (2 + d̃)x̄(1− ϕ̄2) < 0.

◮ Solve the
dbϕ̄(xmax)

dx = 0: xmax = 2
(d̃+2)(1−ϕ̄2)

◮ If
√

d̃
2+d̃

< ϕ̄ < 1, xmax > 1:

0 < b̄ < bϕ̄(1) .

There is an unstable black brane solution. No
stable black brane solution. It will decay to
“hot flat space”.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  0.2  0.4  0.6  0.8  1



Phase structure

If ϕ̄ <

√

d̃
2+d̃

, xmax < 1:

(bϕ̄)max =

(

2

2 + d̃

) 1
d̃
[

d̃(d̃+ 2)
(

1− ϕ̄2
)

]− 1
2

<
1
√

2d̃

(

2

2 + d̃

) 1
d̃

x
1xmax0

(bϕ̄)max

bϕ̄(x)

b̄

x1 x2

◮ 0 < b̄ < bϕ(1), there is one unstable solution.

◮ bϕ(1) < b̄ < bmax there are two solutions. the smaller
unstable, the larger locally stable.

◮ Since the Gibbs free energy of “hot flat space” is zero, for the
larger one to be globally stable, we need IE < 0.

Ĩϕ̄E = − b̄
y
(d̃+ 2)(y− 1)

(

y − d̃
d̃+2

)

< 0 where d̃
d̃+2

< y ≡
√

1− x̄(1− ϕ̄2) < 1

⇒ when 0 < ϕ̄ < d̃
d̃+2

, bϕ̄(1) < b̄ < (bϕ̄)g , there is a global stable black brane

solution at x̄g =
4(d̃+1)

(d̃+2)2(1−ϕ̄2)
.



Summary of the Grand canonical ensemble

◮

√

d̃
2+d̃

< ϕ̄ < 1, 0 < b̄ < bϕ̄(1): one unstable black brane

solution, decay to “hot flat space”.

◮ ϕ̄ <
√

d̃
2+d̃

,

◮ 0 < b̄ < bϕ(1): there is one unstable solution.

◮
d̃

2+d̃
< ϕ̄ <

√

d̃
2+d̃

, bϕ(1) < b̄ < bmax there are two solutions.

the smaller unstable, the larger locally stable, but globally
unstable. They will finally tunnel to “hot flat space”.

◮ ϕ̄ < d̃
2+d̃

,

◮ bg < b̄ < bmax two solutions: smaller—unstable,

larger—locally stable, but globally unstable. They will finally

tunnel to “hot flat space”.
◮ bϕ(1) < b̄ < bg,two solutions: smaller—unstable,

larger—globally stable.



Summary and Disscusion

◮ The phase structures of black branes in Canonical ensemble
and Grand canonical ensemble are quite different because of
the boundary condition.

◮ In canonical ensemble, there is a first order phase transation
and a second order transation at the critical temperature. No
such phase transation in GC. Similar to the phase structure of
the van der Waals-Maxwell liquid-gas phase transation.

◮ The q = 0 case, d̃ = 1, 2 case in canonical ensemble are quite
different from d̃ > 2 case but have some similarity with the
GC cases.



Thank you!
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