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1. Introduction

1.1 Experimental facts on neutrinos

• Precision data –
3 active, almost massless neutrinos interact as assigned in SM

• Oscillation data –

neutrinos have mass, with differences

∆m
2
21 ∼ 7.6 × 10

−5
eV

2
, |∆m

2
31| ∼ 2.4 × 10

−3
eV

2

and leptons mix in CC weak interactions

sin2 θ12 ∼ 0.32, sin2 θ23 ∼ 0.50, θ13 6= 0.

• β decays, cosmological arguments, ... –

neutrinos have sub-eV mass; at least 2 out of 3 are massive

Why are neutrinos so light?
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1.2 Weinberg operator: SM as EFT

• Within SM

SM contains only LH neutrinos – Only Majorana ν mass could be possible

But gauge symmetries of SM do not allow such a mass –

⇒ mν 6= 0 calls for phys beyond SM

Trivial extension:
adding RH ν to form massive Dirac ν as we do for charged fermions –

must tolerate tiny Yukawa coupling less than 10−11

• SM as EFT

We can only see SM particles at low energies below certain scale Λ.

Weinberg (1980): SM gau. symmetries allow a dim-5, L-violating operator

λ

Λ
O5 + h.c., O5 =

(

FL
CǫH

)(

H
T
ǫFL

) H : Higgs doublet

FL : LH lepton doublet

⇒ 1

2

λv2

Λ
νC

L νL + h.c. via 〈H0〉 =
v√
2
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1.3 Conventional seesaws

Weinberg operator O5 for mν is unique.

Ma (1998): From a purely group theor. analysis for SU(2)L ⊗ U(1)Y :

FL = (2,−1), H = (2, +1)

there are 3 and only 3 apparently different realizations of O5 at tree level.

They may hint at 3 different origins from an underlying theory –

(1) FL ⊗ H as a (fermion) singlet: type I seesaw by adding fermion singlets

(2) FL ⊗ FL as a (scalar) triplet: type II seesaw by adding scalar triplets

(3) FL ⊗ H as a (fermion) triplet: type III seesaw by adding fermion triplets

FL FL

H H

N

type I
FL H

FL H

∆

type II
FL FL

H H

Σ

type III
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Back to O5:

for example, for v ∼ 250 GeV, λ ∼ 1, mν ∼ 0.1 eV requires

Λ ∼ 1015 GeV

Dilemma:

mν tends to demand extremely large Λ, while

accessibility to new phys responsible for mν relies on a not-too-high Λ

What to do with this tension?

What kind of underlying phys for mν would possibly be detectable?
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1.4 Beyond conventional seesaws

Goal: lower Λ

Basic approaches

• mν induced radiatively:
one loop (Zee ’80),
two loops (Zee ’85, Babu ’88),
three loops (Krauss et al ’03), ...

Usually amounts to higher-dim operators with additional small factors

Global symmetries usually required to forbid lower-loop contri.

• mν induced at tree level from higher-dim operators

Fields in higher-dim reps required to forbid lower-dim operators

Global symmetries not necessary

Summary

• For realistic pheno, mν should be induced from higher-dim operators

• What are higher-dim neutrino mass operators?

• How to realize them in underlying theories?

Seminar at USTC, Mar 2, 2012 5



2. Higher-dimensional mass operators

2.1 SM as low energy effective theory PLB694

Relevant fields are all SU(2)L doublets with hypercharge in parentheses:

FL (−1), H (+1).

Mass operator unique at every higher dimension:

O2n+5 =
(

FL
CǫH

)(

HTǫFL

)(

H†H
)n

inducing a neutrino mass upon 〈H0〉 = v/
√

2:

O2n+5 : mν ∼ λv2

Λ

(

v2

Λ2

)n

• accommodates tiny mν for an appropriate n without requiring tiny λ or huge Λ

• operator with smallest possible n dominates

Key: Young tableau, 2 of SU(2) is pseudoreal.
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2.2 Two-Higgs doublet model (2HDM) as low energy effective theory PLB698

• 2 Higgs doublets arise naturally in extended models, e.g., SUSY models

• phenomenologically viable: ρ = 1, FCNC suppressed in type I and II models

Relevant fields are all SU(2)L doublets with hypercharge in parentheses:

FL (−1), H1 (+1), H2 (−1).

3 operators at dim-5, e.g.,

T5 = FL
CǫH1 H2

†
FL.

12 operators at dim-7, e.g.,

T
1
7 = FL

CǫH1 H1
T
ǫFL H2

†
H2.

33 operators at dim-9, e.g.,

X4
9 = FL

CǫH1 H2
†FL H1

†H2 H2
†H1.

More possible operators at higher dims.

They induce mν upon 〈H0
1,2〉 = v1,2/

√
2.
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• The phys responsible for mass operators may also induce lepton-number violating
interactions (∆L = 2) with gauge bosons.

Such operators started at dim-7. A few examples:

J
2

=
(

(

DµFL
C
)

ǫH1

)(

(

D
µ
FL

)

ǫH1

)

14 operators in total

M(B) =
(

FL
CǫH1

)

σ
µν

(

FLǫH̃2

)

Bµν 10 operators in total

Phenomenology:

Upon SSB, there are the terms

J2
xy =

1

2
g2

2v
2
1ℓ

C
LxℓLyW

+µW +
µ + · · · neutrinoless ‘double beta’ decays

M(B)xy =
1

4
v1v

∗
2

(

sin θWZµν − cos θWAµν

)

νC
Lxσ

µν
νLy

transition dipole interactions for Majorana ν

Systematic analysis of all related processes are possible with effective operators.
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3. One example: cascade seesaw

Goal: lowest-dim operators with a given set of fields that give mν upon SSB

Require fields in high-dim rep to push operators to higher dim

L must be broken to get seesaw mass

3.1 Basic considerations

• Gauge fields irrelevant; restrict to new fermion and scalar fields

• With new scalars alone, FL must be in a state of I = 1, Y = −2: F C
L FL

⇒ type II seesaw

• With new fermions alone, they must couple FL to H and thus I = 0, 1; Y = 0,±2.

⇒ Y = 0: type I and III seesaws

Y = ±2: mix leptons, but not change # of massless/massive modes

Conclusion - need both new fermions and scalars to go beyond conventional seesaws
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Assume one new scalar Φ and one new fermion Σ

Assume without losing generality YΦ ≥ 0, YΣ ≥ 0.

Restrictions on their quantum numbers

(1) (IΣ, YΣ) 6= (0, 0), (1, 0); (IΦ, YΦ) 6= (1, 2), to avoid conventional seesaws.

(IΣ, YΣ) 6= (0, 2), to avoid trivial mixing.

(2) |IΣ − IΦ| = 1
2 to couple (Φ, Σ, FL).

(3) IΣ, YΣ/2 are integral (half-integral) while IΦ, YΦ/2 are half-integral (integral),
with YΣ/2 ≤ IΣ, YΦ/2 ≤ IΦ to incorporate neutral members.

(4) Neutrality in Y allows:
(4a) YΣ + YΦ = 1 for (FLΣΦ)

(4b) YΣ − YΦ = 1 for (FLΣΦ†)

(4c) YΣ − YΦ = −1 for (FLΣCΦ)

(5) L must be broken.
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3.2 Simplest case: both H and Φ couple to (FL, Σ)

FL FL

x
Σ Σ

H Φ

• Couple (H, Σ, FL): 4 options for IΣ, YΣ –

2 correspond to type I and III seesaws, 1 to trivial mixing,

1 remaining: (IΣ, YΣ) = (1, 2) with (FLΣH†).

• Then IΦ = 1/2, 3/2: 4 options for (IΦ, YΦ) –

YΦ = 1: not possible to break L

YΦ = 0: not possible for Yukawa coupling

1 remaining: (IΦ, YΦ) = (3/2, 3) with (FLΣCΦ).

This is the model in arXiv: 0905.2710 – dim-7 neutrino mass operator
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3.3 Next simplest/more symmetric case: only Φ couples to (FL, Σ)

FL FL

x
Σ Σ

Φ Φ

• (IΣ, YΣ) = (0, 0), (1, 0), (0, 2), (1, 2) are excluded to avoid coupling (Σ, FL, H)

• Options for coupling (Σ, FL, Φ) –

(4b+4c) not possible; (4a+4b) not break L

remaining (4a+4c): YΣ = 0, YΦ = 1

⇒ IΣ integral and IΦ half-integral

⇒ IΣ ≥ 2 to avoid type III, and then IΦ ≥ 3/2

minimal choice: (IΣ, YΣ) = (2, 0), (IΦ, YΦ) = (3/2, 1)

Simpler than the model in arXiv:0911.1374 – dim-9 neutrino mass operator

mν is induced from Yukawa coupling and 〈Φ〉 6= 0

Seesaw operates with heavy Σ and small 〈Φ〉
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Issue: naturally small 〈Φ〉

V ⊃ −µ
2
HH

†
H + λH(H

†
H)

2

+µ2
ΦΦ†Φ −

[

κ
(

ΦH̃HH̃
)

0
+ h.c.

]

H̃ ≡ ǫH∗

• κ = 0: small 〈Φ〉 by fine-tuning parameters ⇒ unnatural

and occurrence of Majoron ⇒ not acceptable

• κ term explicitly breaks L ⇒ κ naturally small:

〈H0〉 ≈
√

µ2
H

2λH

, 〈Φ0〉 ≈ κ∗〈H0〉3

µ2
Φ

, m2
Φ ≈ µ2

Φ

Other terms in V : small corrections to VEV.

mν from dim-9 operator O9

−LYuk+mass = mΣΣΣ +
[

yijFLiHfRj + xj

(

F C
LjΦΣ

)

0
+ zj

(

ΣΦFLj

)

0
+ h.c.

]

⇒ (mν)jk ∼ (xjzk + xkzj)
〈Φ0〉2

mΣ

∼ (xjzk + xkzj)〈H0〉κ∗2 〈H0〉5

mΣm4
Φ
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3.4 Generalization of next-simplest case to higher dimensions

New fields:

Single fermion field Σ of (I, Y ) = (n + 1, 0) with integral n ≥ 1

A sequence of scalar fields Φ(m+1
2) of (I, Y ) = (m + 1/2, 1) with 1 ≤ m ≤ n

Consequences:

• Only Φ(n+1
2) can Yukawa couple to (Σ, FL) due to SU(2)L invariance:

FL FL

x
Σ Σ

Φ(n+1
2) Φ(n+1

2)

• Only Φ(32) can directly develop a naturally small VEV,

while Φ(n+1
2) develops a naturally small VEV by cascading seesaw – see below

• mν is induced from a dim-(5 + 4n) operator.

• No global sym is imposed to realize the above.
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Small 〈Φ(n+1
2)〉 by cascading seesaw

largest contri. to 〈Φ(n+1
2)〉 ↔ lowest-dim operator for mν ↔ leading contri. to mν

• With n + 1 multiplets of scalars that share the same Y but have I =

1/2, 3/2, · · · , n + 1/2, there are many terms in V

But most of them only provide couplings, mixing and mass splitting suppressed by
VEV’s – not of our concern

• L must be explicitly broken.

Since L is necessarily violated by κ(Φ(3/2)H̃HH̃)0 to induce 〈Φ(3/2)〉 6= 0, only need
consider L-conserving terms for all others, that transmit VEV from 〈Φ(3/2)〉 6= 0

towards 〈Φ(n+1/2)〉 6= 0.

V (n+1
2) ⊃ −µ2

HH†H + λH(H†H)2 Φ(12) ≡ H, λ(1) ≡ κ

+
n

∑

k=1

µ2
(k)Φ

(k+1
2)†Φ(k+1

2) −
n

∑

k=1

[

λ(k)

(

Φ(k+1
2)Φ̃(k−1

2)HH̃
)

0
+ h.c.

]

,
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Leading term of VEV’s:

〈Φ(k+1
2)

0 〉 =
1

2
√

2k + 1

|〈H0〉|2

µ2
(k)

λ∗
(k)〈Φ

(k−1
2)

0 〉, n ≥ k ≥ 1,

⇒ 〈Φ(n+1
2)

0 〉 = 〈H0〉|〈H0〉|2n
n

∏

k=1

1

2
√

2k + 1

λ∗
(k)

µ2
(k)

.

In diagrams

Φ(n+1
2) Φ(12)

λ(n) λ(n−1) λ(2) κ

Φ(12) Φ(12) Φ(12) Φ(12) Φ(12) Φ(12) Φ(12) Φ(12)

Φ(n−1
2) Φ(n−3

2) Φ(52) Φ(32)

The first cascade is suppressed by L-violation.

Remaining cascades are suppressed by heavy scalar masses.
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Seesaw neutrino mass

mν
jk = (xjzk + xkzj)

1

mΣ

(−1)n 1

2(2n + 3)

(

〈Φ(n+1
2)

0 〉
)2

= (−1)n(xjzk + xkzj)
1

mΣ

1

2(2n + 3)
〈H0〉2∣

∣〈H0〉
∣

∣

4n
( n

∏

k=1

1

2
√

2k + 1

λ∗
(k)

µ2
(k)

)2

• suppressed by (4n + 1) powers of heavy scales
and one power of small L-violating coupling

⇔ mass operator of dimension (4n + 5)

• One neutrino massless at tree level. Other two massive in either hierarchy.

• Order of magnitude estimate:

ignore Clebsch-Gordan coeffi.
x ∼ z, mΣ ∼ µ(k) ∼ M , λ(k) ∼ λ (for k > 1)

⇒ m ∼ x2λ2(n−1)κ2〈H0〉2+4nM−1−4n

For example, with x ∼ 10−2, λ ∼ 10−1, κ ∼ 10−3, 〈H0〉 ∼ 174 GeV

m ∼ 0.1 eV requires M ∼ 490 GeV at n = 1, M ∼ 190 GeV at n = 2
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4. Conclusion

• Conventional seesaws for neutrino mass imply that underlying physics is generally
hard to access.

• There are two basic approaches to effectively lower new physics scale.

• By employing one new fermion multiplet and a sequence of new scalars which
develop VEV’s via cascading seesaw.

⇒ Neutrino mass operators first appear at dim-(5 + 4n).

Tiny neutrino mass is induced without requiring too small couplings or a too
high scale.

Underlying physics can possibly be explored at high-energy colliders and in
low-energy precision measurements – work in progress.

���

Seminar at USTC, Mar 2, 2012 18


