

Yukawa couplings and lifetime of Higgs boson: going beyond LHC

Jun Gao

Institute of nuclear and particle physics, Shanghai Jiao Tong University

based on arXiv: 1608.01746 and 1804.06858

ICTS, USTC Sep 29, 2018

SHANGHAI JIAO TONG UNIVERSITY Department of Physics

Standard Model of particle physics

 Discovery of the Higgs boson completes the SM of particle physics, which is a model of great success though clear evidence exists for new physics beyond SM

Post Higgs boson Era

 Study on properties of the Higgs boson including looking for further extensions has been the high priority in the next few decades

☆ Higgs boson introduces new phenomenas of study of elementary particles, spin-0 particle, scalar self interactions, Yukawa interactions

Higgs potential and self couplings

 Scalar potential are crucial for understanding EW symmetry breaking and for the fate of our EW vacuum [Andreassen, Frost, Schwartz, 2017]

Yukawa couplings

 SM Yukawa couplings have a strong hierarchy structure, responsible for particle masses; essential for revealing nature of the Higgs boson

mass hierarchy

Top Yukawa plays a crucial role, e.g., in RG running; Yukawa couplings of light particles are also of great importance and challenging to access experimentally

Higgs width/lifetime

 Higgs boson with a mass of 125 GeV decays dominantly to bottom quark pair via Yukawa y_b~0.01 resulting in small width Γ/m~3×10⁻⁵

width vs. mass

Particle	Width(GeV)	lifetime(fm/c)
top	1.3	0.15
Higgs	0.004	47
Z	2.5	0.08
W	2.1	0.09

tiny width (long lifetime) leads to very different phenomenology as comparing to other heavy resonances, e.g., top quark, W/Z bosons

Higgs boson at the LHC

 Higgs boson can be produced abundantly at the LHC (HL-LHC), ~3(30)×10⁷ events though with huge QCD backgrounds

cross section vs. energy

BRs vs. mass

☆ global analysis is required to maximize potential of experimental data and to probe Higgs couplings in a model-independent way

From LHC Higgs Cross Section Working Group, <u>https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWG</u>

LHC measurements

 Current measurement agrees well with the standard model Higgs boson on various signal strength, σ×BRs, with a precision ~10-20%

☆ Without model assumptions only ratios of Higgs couplings can be probed with sufficient precision at LHC due to unknown total width

Light-quark Yukawa couplings

 Measuring Yukawa couplings of light-quarks at LHC are particularly challenging due to their smallness, y_s/y_b~2%, and huge QCD Bks

exotic decays (BR~10⁻⁶)

[Kagan +, 2014, 2016; D.N. Gao, 2014]

 conceptually good; in practice no sensitivity due to huge Bks

Higgs kinematics

☆ LHC/HL-LHC can probe Yukawa of u/d quarks to ~0.3y_b

Limit on total width/lifetime

 Various limits on width/lifetime of the Higgs boson are set at the LHC either directly or indirectly, especially with Higgs interferometry

Going beyond LHC

- I. Higgs properties revealed in heavy-ion collisions
- II. Light-quark Yukawa couplings from CEPC

[Edmond Berger, Jun Gao, A. Jueid, Hao Zhang, arXiv:1804.06858]

[Jun Gao, arXiv:1608.01746]

I. Higgs properties revealed in heavy-ion collisions

[Edmond Berger, Jun Gao, A. Jueid, Hao Zhang, arXiv:1804.06858]

Heavy-ion collision and quark gluon plasma

 Relativistic heavy-ion collisions (RHIC, LHC) are utilized to reproduce conditions of very early second of our universe and study QGP phase

[Chun Shen]

Higgs boson in heavy-ion collision

 Higgs boson in the standard model has an intrinsic lifetime ~47 fm/c, comparing with ~10 fm/c of time scale of quark gluon plasma

Higgs production with hadronic decays

role of jet quenching

- ☆ a natural probe of the lifetime of Higgs boson
- filter for various standard model backgrounds, e.g., QCD jets, top quarks, EW gauge bosons
- ☆ distinct kinematics, enhanced S/B ratio for hadronic decay modes, e.g., Yukawa coupling of bottom quark

Jet quenching

 Parton traversing QGP suffers energy lost due to both collisions (elastic) and medium induced radiations (inelastic)

Hard probes: single inclusive jet

 Measurements on medium suppression of cross sections provide a strong evidence of jet quenching in AA collision

ratio of jet cross sections in PbPb to pp

 $R_{AA}(p_T, y; b) = \frac{d^2 N_{AA}/dy dp_T}{\langle T_{AA}(b) \rangle \times d^2 \sigma_{pp}/dy dp_T}$

☆ Experimentally similar level of quenching for inclusive jet and b-jet

Hard probes: Z/photon+jet

 Measurements on imbalance of the transverse momentum provide a direct probe of jet quenching in AA collision

Simplified quenching models

 Simplified models on jet quenching are used for standard model backgrounds and tested against MC and CMS data

 $\langle \delta p_{\rm T} \rangle = a p_{\rm T} + b \ln(p_{\rm T}/{\rm GeV}) + c$ average p_T lost with Gaussian fluc.

shown are distributions of momentum imbalance in Z + jet production; three models are considered for jet with anti- k_T (D=0.3) algorithm in 0-10% centrality

Signal and backgrounds

 We select the ZH associated production with Higgs decays to bottom pair, Z to leptons; major backgrounds are ZbB and top pair production

process	PbPb(pp) in nb(pb)				
	$5.5 { m TeV}$	$11 { m TeV}$	$39.4 { m TeV}$		
GF	480(10.2)	1556(35.2)	9580(235)		
VBF	15.3(0.316)	65.6(1.40)	421(10.02)		
ZH	10.2(0.230)	28.1(0.687)	147(3.97)		
W^+H	8.38(0.162)	21.8(0.716)	94.2(3.19)		
W^-H	9.22(0.143)	23.4(0.435)	99.5(2.34)		

 total cross sections of typical production channels, PbPb
 vs. pp; centrality factors not applied here

basic selections

$$p_{\rm T}^{\ell} > 15 \,{\rm GeV}, \quad |\eta^{\ell}| < 2.5, \quad \Delta R_{\ell\ell} > 0.2$$

 $p_{\rm T}^{j} > 30 \,{\rm GeV}, \quad |\eta^{j}| < 1.6, \quad \Delta R_{j\ell} > 0.3$

- A pair of same-flavor opposite-sign charged leptons with invariant mass $|m_{\ell\ell} - m_Z| < 10$ GeV;
- Exactly two jets, both *b*-tagged, with separation $\Delta R_{bb} < 2.0;$
- The transverse momentum of the reconstructed vector boson $p_{\rm T}^Z \equiv p_{\rm T}^{\ell\ell} > 100$ GeV.

Significance

 Cuts on pT imbalance and leading-jet pT can enhance signal to BK ratio; significance based on invariant mass distribution of two b-jets

p_T^{bb}/p_T^Z>0.75, p_T^{j1}>60 GeV; with model of strong quenching

M_{bb} after all cuts

lumi.(pb^{-1})	strong	medium	mild	vacuum
LHC	16(5.9)	27(9.8)	26(9.3)	48(17)
HE-LHC	11(4.0)	20(7.2)	20(7.2)	34(12)
FCC-hh	8.0(2.9)	14(5.0)	14(5.0)	23(8.2)

significance vs. ion lum.

- $\begin{array}{ll} \bigstar & \mbox{ion luminosity needed for 5} \\ \sigma \mbox{discovery or 3 } \sigma \mbox{evidence} \end{array}$
- improvement by a factor of 2 can be expected

II. Light-quark Yukawa couplings from CEPC

[Jun Gao, arXiv:1608.01746]

A Circular Electron Positron Collider

 Chinese HEP community is planning for a new collider facility aiming at a Higgs/Z factory with later upgradable to pp collision

Higgs couplings at CEPC

CEPC Higgs factory can provide percent-level precision on modelindependent measurement of various Higgs couplings

Table 2.9 Estimated precisions of Higgs boson property measurements at the CEPC. All the numbers refer to relative precision except for M_H and BR($H \rightarrow inv$) for which ΔM_H and 95% CL upper limit are quoted respectively.

ΔM_H	Γ_H	$\sigma(ZH)$	$\sigma(\nu\nu H) \times \mathrm{BR}(H \to bb)$
5.9 MeV	2.8%	0.51%	2.8%
Decay mode		$\sigma(ZH) \times \mathrm{BR}$	BR
$H \rightarrow bb$		0.28%	0.57%
$H \rightarrow cc$		2.2%	2.3%
$H \rightarrow gg$		1.6%	1.7%
$H\to\tau\tau$		1.2%	1.3%
$H \to WW$		1.5%	1.6%
$H \to ZZ$		4.3%	4.3%
$H\to\gamma\gamma$		9.0%	9.0%
$H ightarrow \mu \mu$		17%	17%
$H \to \mathrm{inv}$		_	0.28%

CEPC-SppC pre-CDR, 5 ab⁻¹

☆ decay modes to light-quarks can be measured but with degeneracies to gluon channels, H->jj

Higgs couplings at CEPC

• One possibility is to apply quark/gluon jet discriminators on top of the jet algorithm with heavy-flavor tagging

Hadronic event shapes

★ A better way from theoretical point of view, utilizing global hadronic event shape observables; e.g., thrust (T) distribution

Thrust definition:

 0.5<T<1, described by resummed prediction matched with fixed-order, plus additional non-perturbative corrections

sensitive to as

Hadronic event shapes

★ A better way from theoretical point of view, utilizing global hadronic event shape observables; e.g., thrust (T) distribution

Thrust definition:

 0.5<T<1, described by resummed prediction matched with fixed-order, plus additional non-perturbative corrections

sensitive to the color factors

Hadronic final state from Higgs decay

 Events of Higgs boson hadronic decay can be selected based on the recoil mass and be fully reconstructed

SM event numbers assuming 250 GeV, 5 ab⁻¹ and Z to electron and muon

$Z(l^+l^-)H(X)$	gg	$b\overline{b}$	$c\overline{c}$	$WW^*(4h)$	$ZZ^*(4h)$	$q\bar{q}$
$BR \ [\%]$	8.6	57.7	2.9	9.5	1.3	~ 0.02
Nevent	6140	41170	2070	6780	930	14

Thrust distribution

 Color-singlet di-gluon and di-quark initiated distributions show an approximate Casimir scaling on the peak position, C_A/C_F=9/4

normalized shapes of the thrust distribution (PS+3 j LO)

hadronization corrections

[JG, 1608.01746]

parton level + hadronization
 corrections; theoretical uncertainties
 from both sides

Extraction of Yukawa Couplings

 Projected sensitivity on light-quark Yukawa couplings is obtained using pseudo-data [JG, 1608.01746]

r=BR(qq)/(BR(qq)+BR(gg)) from thrust

	no sys.	+pert.	+nor.	+had.
limit on r	0.036	0.040	0.045	0.056
limit on r (lumi.×10 ³)	0.0012	0.0014	0.018	0.019

 an exclusion limit on r of 0.06, corresponds to a decay BR(qq) of 0.5% to any of u/d/s, a Yukawa coupling of 9% of SM y_b, or 4 times of SM y_s

comparison with LHC

 ☆ best projected HL-LHC limit from exotic decay on s quark is 20 times of SM y_b, from kinematic distribution on u/d is ~30%

-- Expected y_{23}^{D} Expected $\pm 1\sigma$ Expected $\pm 2\sigma$ B_W ---- Expected $(\mathcal{V}\mathcal{V})$ B_{T} С e+e-, 250 GeV and 5 ab^{-1} SM case, without th. unc. $M_{\rm H}$ 1-T0.15 0.00 0.05 0.10 0.20 95 % CL_s limit on r = BR(qq) / BR(jj)

from various event shapes

expected exclusion limit

Summary

- Precision test of the Higgs couplings will be the most imperative task in the next few decades
- Measurement on Yukawa couplings and total width of the Higgs boson are of great importance but challenging at the LHC
- Heavy-ion collisions provide an unique environment for probing lifetime of the Higgs boson and also bottom Yukawa couplings
- CEPC Higgs factory has the potential of pinning down the Higgs to light-quark decay BRs to sub-percent, thus the strange quark Yukawa to a few times its SM value

Thank you for your attention!

Heavy-ion collisions [backups]

 Some basics: collision energy, Glauber model, centrality class, factorization on cross sections

> nucleon-nucleon center of mass energy $S_{NN}^{1/2}=Z/A^*S_{pp}^{1/2}$ for PbPb, LHC 5.5 TeV, HE-LHC 11 TeV, FCC-hh 39.4 TeV

Hard probes: top quark production [backups]

 Top-quark as a hard probe in heavy-ion collisions (AA collision) for time-structure of quark gluon plasma (QGP)

average initial time

$$\langle \tau_{\rm tot} \rangle = \gamma_{t,{\rm top}} \tau_{\rm top} + \gamma_{t,W} \tau_W + \tau_d$$

 $\langle \tau_{\rm tot} \rangle (p_{t,\rm top}^{\rm reco}) \simeq (0.37 + 0.0022 \, p_{t,\rm top}^{\rm reco}/{\rm GeV}) \, {\rm fm}/c$

quenching-factor

$$\mathcal{Q}(\tau_{\text{tot}}) = 1 + (\mathcal{Q}_0 - 1) \frac{\tau_m - \tau_{\text{tot}}}{\tau_m} \Theta(\tau_m - \tau_{\text{tot}})$$

 reconstructed W boson mass from the two light jets shifted due to quenching, depending on lifetime of QGP

[Apolinario+, 2017]

Hard probes: top quark production [backups]

 Top-quark as a hard probe in heavy-ion collisions (pA collision) for cold nuclear effects (CNM)

total inclusive corse sections

Hard probes: inclusive dijets [backups]

 Measurements on imbalance of the transverse momentum provide a direct probe of jet quenching in AA collision

ratio of p_T of sub-leading to leading jet

[arXiv:1802.00707]

Experimentally similar level of quenching for inclusive jet and b-jet

Outlook [backups]

 Further gains on S/B ratio can be achieved through e.g., multivariate analysis (MVA) or discriminations in jet shapes

35

Higgs as probe of QGP [backups]

 There are also interesting studies from a different perspective, namely using Higgs boson as a probe of QGP instead

discovery in nominal channels

а

Higgs absorption in QGP

[d'Enterria, 2017]

[d'Enterria, Loizides, in preparation]

using precision Higgs cross section calculation and measurement to extract \mathbf{x} the possible suppression factor

Extraction of Yukawa Couplings [backups]

 Projected sensitivity on light-quark Yukawa couplings is obtained using pseudo-data

$$\frac{dN}{dO} = N_S(rf_{H(q\bar{q})}(O) + (1-r)f_{H(gg)}(O)) + N_{B,1}f_{H(b\bar{b})}(O) + N_{B,2}f_{ZZ(q\bar{q})}(O) + N_{B,3}f_{H(WW)}(O),$$

- \star r, defined as BR(qq)/BR(jj), j=g+q
- ★ N_s, total signal events of ZH(jj), assuming an efficiency of 50%
- ★ N_{B1}, BKs from ZH(bb,cc), ~10% of N_S(SM) using heavy-flavor tagging
- * N_{B2}, BKs from ZZ(qq), ~20% of N_S(SM) with selection using recoil mass
- ☆ N_{B3}, BKs from ZH(WW*,ZZ*), ~60% of N_S(SM), (effects are small since far away from signal region)
- various normalized shapes can be obtained either from theoretical calculation or using data-driven in a controlled region

Extraction of Yukawa Couplings [backups]

 Projected sensitivity on light-quark Yukawa couplings is obtained using pseudo-data

$$\frac{dN}{dO} = N_S(rf_{H(q\bar{q})}(O) + (1-r)f_{H(gg)}(O)) + N_{B,1}f_{H(b\bar{b})}(O) + N_{B,2}f_{ZZ(q\bar{q})}(O) + N_{B,3}f_{H(WW)}(O),$$

- N_S can be measured independently to ~3% via hadronic Z decays (pre-CDR)
- ★ systematics on N_{B1}, N_{B2}, N_{B3} estimated to be 4%
- systematics due to scale variations of f(gg) and hadronizations of all shapes are included
- expected exclusion limit on r are obtained via pseudo-data and using profiled log-likelihood ratio with the CL_s method

expected exclusion limit