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1. Symplectic and Poisson-Lie actions

1.1. Symplectic actions

M — Poisson manifold equipped with Poisson bradket;

H — Lie group with Lie algebra.

A symplectic action offf on M is such that for any! € H' ¢ H and any two
functionsf;, fo on M,

{fi(h".x), fo(P ) }ar = { 1, fo}m (P ), (1)

whereH' is a one parameter subgroupaf
The infinitesimal action is defined by introducing the vector fi€ld.X. f(x) =
< f(h'.z)|,_, which satisfies

{X.f1, fotar + {f1, X fotae = XA f1, folme (2)
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The action of any one parameter subgroup is locally Hamiltonian, i.e. one can
introduce a locaHamiltonian functionH x for any infinitesimal action¥,

X.f(x) ={Hx(x), f(x)}n (3)

In standard physics text#{ x is referred to as the canonical generator of the bessing ransiormations
transformation corresponding to the Lie group action i:j‘e";g:j\ppﬁcaﬁon
Assume that{ x are globally defined o/ and depend linearly oX with the Conclusions
additional property

Home Page |
Tt Page |
Then there is a momentum map | » |
|
Page 4 0f36 |
GoBack |
which maps the symplectic action &f on M into the coadjoint action aff on Ful Screen |

H* Close |
HX(hI) = H(AdHh).X(x)y \VIZL'GM;VXEH;VhGH LI

{Hx(z), Hy () }n = Hixy)(z). (4)

P:M — H
P(z)(X) = Hx(x) - VXeH
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1.2. Poisson-Lie groups

A Poisson-Lie group is a Lie groufl equipped with a Poisson brackgt}
such that the Lie group multiplicatiod x H — H is a Poisson mapping.
Construction of a Poisson-Lie group structure: Lgtls be any two functions
on H. Then

{1, 62} (R Z N (h) (V1) (h) (Vi) () (5)

is a Poisson bracket oif, wheren(h) = 3", n®(h)e, ® ey, {e,} is a basis of
H, andV % is the right-invariant vector field

d €]
ag(et ah)|t:0

In particular, if we take fo the matrix elements of a representationtbf we
get

VEi(h) =

(h®,h}y =n(h)- h®@h : heH (6)
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The Lie-Poisson property of the Poisson bradkét; is such that for any group
multiplication(h, g) — hg viewed as a map?’ : h — hg, the following equality
hold:

{07 (h)®,p° (W)} i< = p'({h®, h}w), (7)
where, by definition,

{?(M)®, 0" (M) taxr = {h®,h}ug® g+ h@h{g®,g9}n
p?({h®,h}m) = n(hg)-hg ® hg.

Inserting @) into (7) one finds

n(hg) =n(h) + Adh - n(g), (8)

a cocycle condition for(h).
The Poisson brackédt } ; can be used to define a Lie algebra structuré&n

[degla d€£2]7‘l* - de{gb 62}H7 (9)

whered./ is the differential of the functiorf on H evaluated at the identity
element of H,

)

d
del =Y e — (et
Ze dt e )t:()

a

heree® is the dual ofe,,.
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1.3. Poisson-Lie group action

The action of a Poisson-Lie group on the Poisson manifold/ is a Poisson-

Lie action if for anyh € H the following hold:
Dressing transformations
Lfilh), fo(hx) s = { f1, fam(ho), (10) Examples
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where{, } </ is the product Poisson bracket.

The notion of P.0|sso_n-L|e group action is a direct generalization of the concept s——
of the symplectic action. —I_
One can introduce the infinitesimal Poisson-Lie group action also via the vector _Tuere |

field X: ] RELE
X.f(x) = —f(e*.x)] . KNS

dt t=0 Page 7 of 36 |

The LHS of the above can also be regarded as a linear functiori-vies. comace |
Xf(l') = <Cf<x)7X>7 Full Screen |

Close |

Quit |

with (;(z) being an element df(*.
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The infinitesimal form of {0) reads

1X. 1, ol + {1 X ok + (G Calme, X) = XA S1, fot (11)

or equivalently,
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{Cfu fQ}M W {fb Cfg}M SR [Cfl, sz]H* = C{f1>f2}M' Examples
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It follows that the Poisson-Lie action cannot be symplectic action urii€ss
abelian.
The notion of local Hamiltonian functions is generalized into the following def- one Pece |
inition for nonabelian Hamiltonian Tite Page |
v
B G 0 = T'{f, T} X (12) —

That (L2) is consistent with 1) can be verified in not more than 10 lines of _ Pagesof3s |
calculation. GoBack |
The momentum map in this case is defined by Full Screen |

73 : M A\ H* (13) Close |

r — I(z). .
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1.4. Specialization: M = G, H = G*

Take for M a connected Lie grou@ with Lie algebrag. The Poisson bracket
on M = G is defined via the classicatmatrix taking values o x G:

{z®,2}¢ =[rf,z®2] z€G, (14)

wherer+ are solutions of the classical Yang-Baxter equation

[ri, 73] + [ria: 3s] + [ri3, m3] = 0, (15)
with r;, = —r;; and their difference is equal to the second tensor Cagimnir
St et

rt—r =1L

The Poisson bracket @rinduces a Lie algebra structure ghas follows. First,

one identifieg;* with G as vector spaces by use of the standard Cartan-Killing
form (,) defined onG. Then the Lie bracket induced by the Poisson bracket

{, }¢ can be written as

[X7 Y]R - ([R<X)7 Y] + [Xv R(Y)]) ) (16)

1
2
whereR = R™ + R~ with R¥(X) = (r*,1 ® X),.

Symplectic and...

Dressing transformations
Examples

Potential Application
Conclusions

Home Page |
Title Page |
KIS
| > |
Page 9 of 36 |
Go Back |
Close |

Quit |


http://http://physics.nankai.edu.cn/lzhao

It follows from the factR™ — R~ = 1 that everyX € G admits a unique
decomposition
X=X"-X", X*=RX). (17)

Then the Lie bracket | can be rewritten as
[X7 Y]R — [X+,Y+] T [X_7Y_]7 (18)

the RHS being defined in terms of the Lie brackegofOne immediately recog-
nizes that any pair of elemenis*, Y~ commutes irGr = G*. In other words,

G+ = SMR* are two commuting subalgebrasgri. Correspondingly, the Lie
groupGr = G* generated by* has the composition law

(9-,9+)-(h— hy) = (g-h—, g+hy). (19)

Just ag7 andG* are identified as vector spacés,andG* can be identified as
manifolds:
(9-,9+) € G — g=g"'g; €G. (20)

The last factorization of € G is unique for every; which can be regarded as a
purely algebraic version of Riemann-Hilbert problem.
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The groupG™ itself becomes a Poisson-Lie group if we introduce on it the

Semenov-Tian-Shansky Poisson bracket: Symplecticand.
{9+©,9+}c+ = —[r", 9+ ® g4]
{g—®7 g—}G* — _[T:lza g- & g—]
{g—®7 g—i-}G* — —[’I"_, 9- g+] Home Page
{94®,9-}6+ = —[r", 9+ ®g-] (21) e
or, for the factorized element= ¢~'¢,:
{99,9}¢- = —(g@)r"(1®g) — (1®g)r (¢®1)

Page 11 of 36

+g®grT+17(g®9). (22)
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The action ofG* on G-
For any(g_, g.) € G*, The action is given as follows:

(9-,91) G xeCG —af = (zgr raxgs' €G with g=g7'g,(23)

That the two signs give the same resultféns required in order that the action
(23) indeed satisfies the group composition lawdsr.
The infinitesimal form of 23) is,

bxz = Yox—x Xy with Yi=(zXz b (24)
The corresponding nonabelian Hamiltonian is the group element itself, i.e.:
oxr=(1® Xe Vz®,2}e), VX G, VreG. (25)

The proof is simply done by inserting the Poisson brackeéj {nto (25) and
remembering the definition di*.

Symplectic and...

Dressing transformations
Examples

Potential Application
Conclusions

Home Page |
Title Page |
KIS
| > |
Page 12 of 36 |
Go Back |
Close |

Quit |


http://http://physics.nankai.edu.cn/lzhao

2. Dressing transformations

— A number of different historical names (Riemann-Hilbert transformations,
hidden symmetry transforms, non-local transformations, ... gaasking trans-

Symplectic and...

formationg;
— Some subtleties: Riemann-Hilbert or hidden symmetries were originally ==

treated as Hamiltonian symmetries for certain (1+1)-dimensional soliton equa- conclusions
tions and, as such, they (usually) lead to infinite dimensional Kac-Moody alge-

bras. However, they are actualiyt Hamiltonian symmetries but rather sym- Home Page |
metries only on the space of solutions to the soliton equations. Tite Page |

The key difference lies in that dressing symmetries do not commute with | ),
the Han_nltoman of the soliton equation. Their charges generate a_l non-local )
nonabelian symmetry algebra and do not belong to the commutative algebra e |
generated by the set of commuting integrals of motion.

Go Back |
— Traditional Riemann-Hilbert transformations depend crucially on the solution
o . g . -1 Full Screen
of a certain Riemann-Hilbert problem liké\) = UZ*(A\) U, (), whereU. ()
are required to be analytic respectively on two regions separated by a contour __ Coe |
C on the) plane. The choice of the contoaf seems to have no dynamical or __ qut |
algebraic reasoning.
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2.1. Dressing transformations in the ultralocal gauge — Poisson-Lie
symmetries

Symplectic and...

Every classical integrable soliton equation admits a zero curvature descriptiongmr—r=y
which is the compatibility condition for the Lax equations Sxamples

Potential Application
Conclusions

D, T(z) =0, D,=0,— A, w=(0,1), (26)
where the vectord,, is called the Lax connection which encodes all the dy- [ samoress |
namical information of the system. Usually, takes value on some Lie Title Page _|
algebrag which generates the Lie grou@ on which the transport matrix “ | » |
T(x) = T(x,0) = Pexp(f, Ai(z,t)dz) lives. It is clear from £6) that the < ||

transport matrix/'(z) is defined up to the right multiplication by a constant Page 14 0f 3 |
group element. This degree of freedom is removed by the standard normaliza- |

Go Back

tion condition -
T7(0,0) =1, T(x,z)=T(x,y)T(y, 2). (27) Close |
Quit |
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For a large number of integrable models there exist the so-called fundamental
Poisson relation (FPR)

{L(z)®,L(y)} = [r, L) ® 1 + 1 ® L(z)]d(x — y), L=A,, (28)

wherer® satisfy the classical Yang-Baxter equation. Such FPRs are called ul- o
ymplectic and...

tralocal because they integrate into the following Poisson bracket for the trans =
Examples

p O l’t m atrIX Potential Application

Conclusions
{T(@)®,T(x)} = [r*,T(z) ® T(z)], (29)

{T(.’lﬁ, y)®7 T(Z7 w)} - O If (.’lf, y) m (27 w) - @ (30) Home Page |
For Lax systems with an ultralocal FPR, the dressing transformations are defined __TitePese |
as | »
T(z) — T9(z) = ©+(2)T(x)gx ", (31) Lol
where _Pege 15015 |
O(z) = T(x)gT~ (), (32) LT
Full Screen |

Close |
O(z) =0 () 'O (), g=g 'gs (33) |

determined by the classicaimatrices .

and the suffices- are in accordance with the unique factorizations
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We see that the action of dressing transformations are exactly the Poisson-Lie
group action of the grou@™ on . In particular, the nonabelian Hamiltonian of g oectic and...
the dressing group action is exactly the monodromy maftix) with L being

Examples

the boundary value of: i
0xT () = (1@ XT(L){T(L)®,T(x)})s. (34)

Home Page

The induced transformation on the Lax connection takes the form of a gauge g

Title Page
transformation, i.e. _er |

44 (44

Au() = A%(x) = 0,0+(x)07 (z) + O+ (x) A, (2)03 (). (35) <]
However, these must lerm-preserving gauge transformatiomsich maps one Paetoote |
solution to the soliton equation to another. In particular, ttiegngethe soliton __Gosack |
numberas well as theotal energyof the system. Ful screen_|
Close |

Quit |
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2.2. Non-ultralocal gauges

— Ultralocal gauge does not always exist for soliton systems, e.g. Riemann-
Sigma models are not ultralocalizable.

Symplectic and...

— Ultralocal gauges are extremely difficult to find, even if they do exist.
— Needs a description of dressing transformations which is essentially indepen= e
dent of the ultralocality of the gauge choice for the Lax system. Conclusions
The FPR written in a generic (non-ultralocal) gauge takes the form
Home Page |
{L(x)®,L(y)} = ([r + s, L(x) @ 1] + [r — 5,1 ® L(x)]) 6 (x—y)+2sd" (x—y), rerae |
o) T

wherer is antisymmetric under the exchange of its two tensor product compo-
nents, whiles is symmetric under the same exchange. It should be reminded _ | |

that any FPR can be casted into the above form, wi#ind s being possibly | Page 170f3 |
dynamical. GoBack |

Whens = 0, the FPR 86) degenerates intd2f). In the presence of generic Full Soreen |
s, ther in (36) no longer satisfies the classical Yang-Baxter equation, and this close |
renders the factorization probler®3) more complicated. Qui |
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Way Out:

{D(z)®,D(y)} =[F+ 8§ D)@ 1]+ [f — §5,1® L(x)], (37)

whereD(z) = Dy, 7 = rd(x —y), § = sé(z —y). The condition that37) obeys
Jacobian identity implies the following equations,

[di12, d13 + da3] + [ds2, di3] = 0, (38)
[c12, c13 + ca3] + [c32, c13] = 0, (39)
wheredys = r19 + S19, do; = PdppP = —(7“12 = 812> = —cy9. The equations

(38,39) are known as modified classical Yang-Baxter equations.
Introduce two linear mapB,; andR. on g,

Ry : G6—G, R4(A) = (di2,1 ® A),,
R, : G—G, R.(A) = {c19,A® 1), VAEG.

2 = TabXa & Xb7 SN SabXa & Xb?
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Ry(A) = (" + ) X (X3, A)

= (" = s") (X0, A)X, = —Re(A).

Examples

One can Slmply erte Potential Application

Conclusions

R(A) = Ry(A) = —R.(A).

Home Page |
Applying the operatiofA ® B, -),2 to the FPR §7), one gets |
Title Page |
{D(A),D(B)} = (D, |R(A), B] + [A4, R(B)|) = D(|A, Blr), (40) I
| >
where[A, B|r = [R(A), B]+[A, R(B)] is called the Baxter-Lie bracket. Notice
Page 19 of 36 |
that in writing @0), we have takew as the generator of a one dimensional Lie
algebra independent ¢f, with (0, G) = 0. The symbolD(A) is defined as —
D(A) = <D7A> Close |

Quit |
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The condition for the left hand side of(@) to satisfy Jacobi identities now be-
comes the same condition f@A, By to satisfy Jacobi identity, i.e. the lin-
earized form of the modified classical Yang-Baxter equation,

_ Symplectic and...
[RA, RB] — R([RA, B] + [A, RB]) = —[A, B]. (41)

Examples

It follows immediately that the following classical Yang-Baxter equations hold,  Feeta Aeieaton

Conclusions
[Rj:A, RiB] — RiqRiA, B] S E [A, Rj:BD =0, (42)
Home Page |
1 Title Page
S(R1). e ]
44 44
The images ofz. in G, « |
g.=9mRL C G (43) Page 20 of 36 |
are respectively Lie algebras which commutes with each other, thankg)to ( GoBack |
Moreover, R are also homomorphisms frofy, (i.e. the sety equipped with Furscreen |

the Lie bracket, |) to G, -
(R+1D[X,Y]zg=[(R+1)X,(R£1)Y]. (44) it |

where
Ri =


http://http://physics.nankai.edu.cn/lzhao

For X € G, we need to make the unique factorization

X=X,-X_.
. . Symplectic and...
This can be achieved as follows,
Examples
1 1 Potential Application
X = X+ —X_= i(R + 1)X - é(R - 1)X (45) ConclusiF:)pns

Since the operatoR is uniquely determined by theand s matrices as shown

above, this factorization is also unique, and correspondingly the group element _Home Page |
factorizationg = g~'g, is also uniquely determined. With this solution of the __ Tite Page |
factorization problem, the dressing transformation in the non-ultralocal case can _ 4« | » |

be performed in exactly the same way as in the ultralocal case. <« |
— Everything works smoothly and it seems that there isn’t much differences be-  rage210r3s |
tween ultralocal and non-ultralocal cases. GoBack |

—AnOnymOUS Full Screen |
No! The structure of the dressing group is significantly modified by the gauge cose |

- : . : :
choice!We shall illustrate the differences below using simple examples. |
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3. Examples

. Symplectic and...
3 - 1 : TOda erIdS Dressing transformations
Let us start by recalling the Lax pair of Toda field theory in the ultralocal gauge: Paeniel Appicaion
onclusions

aﬂ:T(l’) = AiT@C),
1 1 ome Page
AL = =+ [—(‘LECI) + exp <:F—de(1)> Ei] 7 (46) Home Pag |
2 2 Title Page |
= Z@iHia Ey = ZEﬂ, « | » |

—{H,;, E1;}: the Chevalley basis for the Lie algelyaFPR: >

Page 22 of 36 |
{L(z)®,L(y)} = [r*, L(z) 1 + 1@ L(y)]d(z — y), oask |

.. Full Screen |
7“:]: — iﬁ[Z(K_l)Z]HZ®H]+2 Z Ej:()z@EZFOé]a
Zj a€A+ Close |

K is the symmetrized Cartan matrix Gf Qut |
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The factorization problem is now solved with the aid-of

1
AN ) — i§Hi, Ri(Fyiy) = £EL,, RIS (47)
This factorization is completely symmetric in theand the— parts. In particu-
lar, the Cartan subalgebra generators appear in both ted the— subalgebras
of the dressing algebr& his+ — symmetry will be lost if we were working in
a non-ultralocal gauge as will be shown below48)(
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Change the working gauge by setting

i) = ee (%q)) T(@).

Symplectic and...

In the gauge withl(x) playing the role of transport matrix, one has the Lax pair  oressing tensiormations

Potential Application

8+\Il(:1:) = ((9+(I) + E+) \I/(l’), 6_\I/(x) = — [eXp (Cl/d(b) E—] \Ij(x) (48) Conclusions

One has

Home Page |
{L(@)®,Ly)} = ([r +5,L(2) @ 1] + [r — 5,1 ® L()]) 0(z—y)+256'(z—y), TitePage |
with |« | » |
; _ <] > |
s = Z(K_l)wHi ® H]’ Page 24 of 36 |
ij
r= Y (Ea®E,-E,®E,) mod CII, __coee |
ol _Fulscreen|
M= (KYWHeH+Y (B.®F o+E  ®E,). | clse |
&) a€AL Quit |
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One can write

d12 =712 = S12 = Z(K_l)”HZ X H] aiN Z (Ea @ E—a - E—a X Ea) c

ij acAy
This leads to the linear maj, with

R(H;) = H;, R(Fi,) =1FE.,.
Consequently, one has

R.(E,) = E., R.(E_,)=0, R.(H)=H,
R.(E)) = 0, R.(E_o)=-E_,, R_(H;})=0. (49)

Thus forVX € G, a unique factorizatioX = X, — X _ is given explicitly.
—Notice the sharp contrast between the solutiet¥ (for ultralocal case) and
(49) (for non-ultralocal case) to the factorization problem!
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Dressing of the Toda fields:
According to the form of the Lax equationq), the following vectors

V) = MNl¥(x), €9 =07 (z) exp(@)AL)

max >

are respectively chiral and antichiral,
a_g(p) _ a+§_(p) — 0.

The dressing transformation df(x) naturally induces the transformation for
g(P) andé(ﬂ):

g(p) _ g(p)g:l7 5(p) _ g+§(p). (50)

Therefore, one has

exp()\(p) L) = g) . g) _, glr) g1y, £0) — ¢(0) gglo), (51)

max

More concretely, writing
OL =K M.

where).. are group elements generatedMy,,, K. belong to the Cartan sub-
group and, in particulagl _ = 1. One finds thaf> transforms according to

d— d+Ink,.
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3.2. Principal chiral model

The model is defined via the Lagrangian density

1
£:—ﬂ@ﬂ% J, = 0,99 ", g €a@G.

The equation of motion and the Lax connection are respectively given by ST
Dressing transformations
a/1«‘]'u — 07 pplication
A+ J Ao+ 1 Conclusions
Ay = ———— Al=L=—F——.
T o1 ! 22— 1
The FPR can be directly evaluated, using the standard canonical Poisson brack- tomerage |
ets for the fundamental fields, yielding Tite Page |
4 44
(L@, L.} = [+ ) ), Lz, N) © 16 — y) el
||

+[(r —s)(A ), 1 ® Ly, 1)]o(z — y)

+25(0, 18 (x ~ ), 52 [

Go Back |
Whel’e )\ + Full Screen |
0
)\ — H ose |
S( 7/’6) ()\2 . 1) (,LLQ o 1) ) Cl

IT is the symmetric tensor Casimir operatoraf __ qut |

II=g¢%X,®X,.
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Since the gauge group for the Lax connection is @dbut ratherG, the loop
group based ordr, the matrixr(\, ) is only determined modulo a constant
multiple of the symmetric tensor Casiniirof G, i.e.

Symplectic and...

1 AQ ILL2 5 Dressing transformations
A ) = II mod CII
r( 7’LL> )\ NN ,LL ()\2 NN 1 + ,LL2 AN 1) ) PotentialAtppIication
= = Conclusions
(I, X3) = X, VX e€G.
Following the last section, one can rewrite the FBR {nto the form Home Page |
A N Title Page
D(z, \)®, D(y, = |dia(A\, i), D(x, A\) @ 1| + |C12(A, 1), 1 ® D(y, )],
(D@, )®, Dy, 1)} = [diao(r, 1), D(ar, A) @ 1] + [ena(A 1), 1 ® Dy, o) ——
Whereaflg — d125<33 A= y), Clo = 6125<$ x y), and < 4
7o 2, R \: | Page 22013 |
12 — PR 21 (22— 1) (u2 — 1) GoBack |
i ( 2 2/,L2 )H7 Full Screen |
M M — 1 Close |
ci2 = —do.

Quit |


http://http://physics.nankai.edu.cn/lzhao

Substituting the expressions féy, andc,, back into 38,39), one sees that the

factor é‘il appears in every term in the modified Yang-Baxter equation, which
1!

means that the modified Yang-Baxter equation holds true independent of this
algebraically trivial factor. For this reason, one can simply drop this factor while |¢, Jccicand. .

defining the linear magk over the loop algebrg, i.e. introduce the map as e

Potential Application

R[X(/\)] — 2d_7ilu Iu; 1t7“2 {d12()\, ,LL) [1 2 X(M)]} . Conclusions

Consequently, Home Page |
1 1 Title Page

S (RE1) [X(N)] = 5 (RIX () % (11, (V) ) Sl
2 2 “« | »
is well-defined. Explicitly, forA\” X, € G, one has <]

[)\nX } B )\nXa7 (n Z O) Page 29 of 36 |

aj4+ — O’ (n < O) 9 Go Back |

x) =4 % =20 oo |

T XX, (n<0) qui |
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Accordingly, for¥g()\) € G, the factorizationy(\) = ¢g=*(\)g4 () is uniquely

determined, where, ()\) is analytic inside the unit circle on theplane, while SISOl
g—(\) is analytic outside the unit circle on theplane. Such a factorization
agrees exactly with the historical notion of Riemann-Hilbert transformations for |camucns.
the principal chiral model (which is the infinitesimal form of dressing trans-
formations from the modern view point), which was invented before the rela-
tionship between dressing transformations and the Poisson-Lie structure was e
understood.

Notice that the\-independent subalgeb¢alies completely inside the subalge- KRS
braG. . This is another example in which theand— subalgebras are asymmet- 1> |
ric. The asymmetry between theand the— subalgebras in the dressing group E==EE
algebra may be a universal property for the dressing transformations defined in __Goback_|

the non-ultralocal gauges. Full Screen _ |

Close |
Quit |
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Symplectic and...

Dressing transformations

The dressing group of transformations is actually the semiclassical ancestor om
quantum group symmetries (including finite quantum groups, quantum affine "™
algebras and Yangian doubles, each corresponds to different types of classi-

cal r-matrices). Therefore, for classical integrable systems admitting dressing _ Home Page |
transformations, the problem of finding the quantum spectrum is fairly simple: Tite Page |
one simply needs to find all the states in certain highest weight representations  « | » |
of the corresponding quantum groups (or quantum affine algebras or Yangian Ky

doubles etc). Page 31 0136 |
Full Sereen |
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4. Potential Application

—I'm pretty aware that this is a workshop on superstrings and related matters. >Teesc.

So why bother to talk about these algebraic issues here? S
The answer is related to the recent advances in the study of [IB Green-Schwarzonclusions
superstring omMdSs x S° background.

As is well known, IIB superstring omdS; x S° is dualtoD = 4 N = 4 Home Page |
SYM in the framework of AAS/CFT correspondence. Dolan, Nappi and Witten e Page
made some important discovery on the hidden symmetry from the SYM side T > |
(hep-th/0308089, 0401243). They actually found a Yangian algebra symme- RN
try for the weakly coupled SYM. The corresponding structure on the AdS side

IS just the algebra of nonlocal charges associated with the nonlocal conserved B
currents. The latter was found even earlier by Bena, Polchinski and Roiban __cosx_|
(hep-th/0305116). The nonlocal Yangian symmetry for the IIB superstring on [ meeen |

AdSs x S° is enlarged into super Yangian symmetry by Hatsuda and Yoshida Ciose |
(hep-th/0407044). Qut |
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Symplectic and...

Dressing transformations

Now the problem arises: The approaches used by Bena-Pochinski-Roiban an@ampes
Hatsuda-Yoshida are in a sense like treating the symmetries generated by no
local conserved currents as Hamiltonian symmetries (that's why the symmetry,
algebras they found lack a classical double structure). The situation is very
much similar to the early days in the study of dressing symmetries. Since we erue |
KNOW that the symmetries generated by the nonlocal charges are related to

dressing symmetries, their actions on the superstring variables should NOT be
Hamiltonian — there must be a Poisson-Lie group action and hence a classical _ | |

double structure. Page 330136 |
Go Back |
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What do we need to justify the last statement?

— We need a proper worldsheet action for the IIB superstring@st, x S°, and

this is provided by Roiban-Siegal (hep-th/0010104) or alternatively by Metsaev-
Tseytlin (hep-th/9805028);

— We need a Lax representation for the equations of motion, and this is given by

Hatsuda-Yoshida as oy s
0 + Ly, 85 + Lo) =0, (53)
2\
(L)Y = —— NI ™ + (To)ar™] (54)
2)\ ome Page
(Lol = = AU + (™) (G5) e
o Title Page |
: : : - GL(4]4
where J., are right invariant vector fields on the super co p4)><(G|L)(1))2' “« | »
Another Lax pair was given earlier than Hatsuda-Yoshida by Hou et al (hep- <« | »
th/0406239) but with more complicated notations which | omit here; Page 34 0136 |

— We see that the Lax structure is very much like the one for principal chiral GoBack |
model and naturally bears a non-ultralocal character, so we need a methodtodo ..., |
dressings right from the non-ultralocal gauge — this is outlined here; cose |
— To make the dressing procedure work, we need the explicit form for dimel on |
s matrices. This is still NOT presented anywhere yet! Still waiting for this KEY

input ...
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Symplectic and...
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Conclusions

Home Page |
Title Page |
If all the necessary conditions just listed are met and all the speculations | just £ |

outlined turns out to be correct, then it is highly hopeful that the theory of Yan- ||

gian doubles will play a role in the quantization of 11B Green-Schwarz superst- | _Pagessorss |
ing on AdS; x S° background. Gogack |
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