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1. Symplectic and Poisson-Lie actions

1.1. Symplectic actions

M – Poisson manifold equipped with Poisson bracket{, }M ;

H – Lie group with Lie algebraH.

A symplectic action ofH onM is such that for anyht ∈ H t ⊂ H and any two

functionsf1, f2 onM ,

{f1(h
t.x), f2(h

t.x)}M = {f1, f2}M(ht.x), (1)

whereH t is a one parameter subgroup ofH.

The infinitesimal action is defined by introducing the vector fieldX: X.f(x) ≡
d
dtf(ht.x)

∣∣
t=0, which satisfies

{X.f1, f2}M + {f1, X.f2}M = X.{f1, f2}M . (2)

http://http://physics.nankai.edu.cn/lzhao
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The action of any one parameter subgroup is locally Hamiltonian, i.e. one can

introduce a localHamiltonian functionHX for any infinitesimal actionX,

X.f(x) = {HX(x), f(x)}M . (3)

In standard physics texts,HX is referred to as the canonical generator of the

transformation corresponding to the Lie group actionX.

Assume thatHX are globally defined onM and depend linearly onX with the

additional property

{HX(x), HY (x)}M = H[X,Y ](x). (4)

Then there is a momentum mapP :

P : M −→ H∗

P (x)(X) = HX(x) ; ∀ X ∈ H

which maps the symplectic action ofH onM into the coadjoint action ofH on

H∗

HX(h.x) = H(AdHh).X(x), ∀ x ∈ M ; ∀ X ∈ H ; ∀ h ∈ H

http://http://physics.nankai.edu.cn/lzhao
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1.2. Poisson-Lie groups

A Poisson-Lie group is a Lie groupH equipped with a Poisson bracket{, }H

such that the Lie group multiplicationH ×H → H is a Poisson mapping.

Construction of a Poisson-Lie group structure: Let`1, `2 be any two functions

onH. Then

{`1, `2}H(h) =
∑
a,b

ηab(h)(∇R
a `1)(h)(∇R

b `2)(h) (5)

is a Poisson bracket onH, whereη(h) =
∑

a,b ηab(h)ea ⊗ eb, {ea} is a basis of

H, and∇R
a is the right-invariant vector field

∇R
a `(h) =

d

dt
`(eteah)|t=0

In particular, if we take for̀ the matrix elements of a representation ofH, we

get

{h⊗, h}H = η(h) · h⊗ h ; h ∈ H (6)

http://http://physics.nankai.edu.cn/lzhao
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The Lie-Poisson property of the Poisson bracket{, }H is such that for any group

multiplication(h, g) → hg viewed as a mapρg : h → hg, the following equality

hold:

{ρg(h)⊗, ρg(h)}H×H = ρg({h⊗, h}H), (7)

where, by definition,

{ρg(h)⊗, ρg(h)}H×H = {h⊗, h}Hg ⊗ g + h⊗ h{g⊗, g}H

ρg({h⊗, h}H) = η(hg) · hg ⊗ hg.

Inserting (6) into (7) one finds

η(hg) = η(h) + Adh · η(g), (8)

a cocycle condition forη(h).

The Poisson bracket{, }H can be used to define a Lie algebra structure onH∗:

[de`1, de`2]H∗ = de{`1, `2}H , (9)

wherede` is the differential of the functioǹ on H evaluated at the identity

elemente of H,

de` =
∑

a

ea d

dt
`(etea)

∣∣∣∣
t=0

,

hereea is the dual ofea.

http://http://physics.nankai.edu.cn/lzhao
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1.3. Poisson-Lie group action

The action of a Poisson-Lie groupH on the Poisson manifoldM is a Poisson-

Lie action if for anyh ∈ H the following hold:

{f1(h.x), f2(h.x)}H×M = {f1, f2}M(h.x), (10)

where{, }H×M is the product Poisson bracket.

The notion of Poisson-Lie group action is a direct generalization of the concept

of the symplectic action.

One can introduce the infinitesimal Poisson-Lie group action also via the vector

field X:

X.f(x) =
d

dt
f(etX .x)

∣∣∣∣
t=0

.

The LHS of the above can also be regarded as a linear function overH, i.e.

X.f(x) = 〈ζf(x), X〉,

with ζf(x) being an element ofH∗.

http://http://physics.nankai.edu.cn/lzhao
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The infinitesimal form of (10) reads

{X.f1, f2}M + {f1, X.f2}M + 〈[ζf1
, ζf2

]H∗, X〉 = X.{f1, f2}M (11)

or equivalently,

{ζf1
, f2}M + {f1, ζf2

}M + [ζf1
, ζf2

]H∗ = ζ{f1,f2}M
.

It follows that the Poisson-Lie action cannot be symplectic action unlessH∗ is

abelian.

The notion of local Hamiltonian functions is generalized into the following def-

inition for nonabelian Hamiltonian:

X.f = 〈ζf , X〉 ≡ 〈Γ−1{f, Γ}, X〉. (12)

That (12) is consistent with (11) can be verified in not more than 10 lines of

calculation.

The momentum map in this case is defined by

P : M −→ H∗ (13)

x −→ Γ(x).

http://http://physics.nankai.edu.cn/lzhao
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1.4. Specialization:M = G, H = G∗

Take forM a connected Lie groupG with Lie algebraG. The Poisson bracket

onM = G is defined via the classicalr-matrix taking values onG × G:

{x⊗, x}G = [r±, x⊗ x] x ∈ G, (14)

wherer± are solutions of the classical Yang-Baxter equation

[r±12, r
±
13] + [r±12, r

±
23] + [r±13, r

±
23] = 0, (15)

with r+
12 = −r−21 and their difference is equal to the second tensor CasimirΠ ≡∑

a ta ⊗ ta,

r+ − r− = Π.

The Poisson bracket onG induces a Lie algebra structure onG∗ as follows. First,

one identifiesG∗ with G as vector spaces by use of the standard Cartan-Killing

form 〈, 〉 defined onG. Then the Lie bracket induced by the Poisson bracket

{, }G can be written as

[X, Y ]R =
1

2
([R(X), Y ] + [X, R(Y )]) , (16)

whereR = R+ + R− with R±(X) ≡ 〈r±, 1⊗X〉2.

http://http://physics.nankai.edu.cn/lzhao
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It follows from the factR+ − R− = 1 that everyX ∈ G admits a unique

decomposition

X = X+ −X−, X± ≡ R±(X). (17)

Then the Lie bracket[, ]R can be rewritten as

[X, Y ]R = [X+, Y +]− [X−, Y −], (18)

the RHS being defined in terms of the Lie bracket ofG. One immediately recog-

nizes that any pair of elementsX+, Y − commutes inGR ≡ G∗. In other words,

G± ≡ =mR± are two commuting subalgebras inG∗. Correspondingly, the Lie

groupGR ≡ G∗ generated byG∗ has the composition law

(g−, g+).(h−, h+) = (g−h−, g+h+). (19)

Just asG andG∗ are identified as vector spaces,G andG∗ can be identified as

manifolds:

(g−, g+) ∈ G∗ −→ g = g−1
− g+ ∈ G. (20)

The last factorization ofg ∈ G is unique for everyg which can be regarded as a

purely algebraic version of Riemann-Hilbert problem.

http://http://physics.nankai.edu.cn/lzhao
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The groupG∗ itself becomes a Poisson-Lie group if we introduce on it the

Semenov-Tian-Shansky Poisson bracket:

{g+⊗, g+}G∗ = −[r±, g+ ⊗ g+]

{g−⊗, g−}G∗ = −[r∓, g− ⊗ g−]

{g−⊗, g+}G∗ = −[r−, g− ⊗ g+]

{g+⊗, g−}G∗ = −[r+, g+ ⊗ g−] (21)

or, for the factorized elementg = g−1
− g+:

{g⊗, g}G∗ = −(g ⊗ 1)r+(1⊗ g) − (1⊗ g)r−(g ⊗ 1)

+(g ⊗ g)r± + r∓(g ⊗ g). (22)

http://http://physics.nankai.edu.cn/lzhao
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The action ofG∗ onG:

For any(g−, g+) ∈ G∗, The action is given as follows:

(g−, g+) ∈ G∗, x ∈ G → xg = (xgx−1)± x g−1
± ∈ G with g = g−1

− g+.(23)

That the two signs give the same result forxg is required in order that the action

(23) indeed satisfies the group composition law forG∗.

The infinitesimal form of (23) is,

δX x = Y± x− x X± with Y± = (xXx−1)±. (24)

The corresponding nonabelian Hamiltonian is the group element itself, i.e.:

δX x = 〈(1⊗Xx−1){x⊗, x}G〉2 ∀X ∈ G, ∀x ∈ G. (25)

The proof is simply done by inserting the Poisson bracket (14) into (25) and

remembering the definition ofR±.

http://http://physics.nankai.edu.cn/lzhao
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2. Dressing transformations

– A number of different historical names (Riemann-Hilbert transformations,

hidden symmetry transforms, non-local transformations, ..., anddressing trans-

formations);

– Some subtleties: Riemann-Hilbert or hidden symmetries were originally

treated as Hamiltonian symmetries for certain (1+1)-dimensional soliton equa-

tions and, as such, they (usually) lead to infinite dimensional Kac-Moody alge-

bras. However, they are actuallynot Hamiltonian symmetries but rather sym-

metries only on the space of solutions to the soliton equations.

The key difference lies in that dressing symmetries do not commute with

the Hamiltonian of the soliton equation. Their charges generate a non-local

nonabelian symmetry algebra and do not belong to the commutative algebra

generated by the set of commuting integrals of motion.

– Traditional Riemann-Hilbert transformations depend crucially on the solution

of a certain Riemann-Hilbert problem likeU(λ) = U−1
− (λ)U+(λ), whereU±(λ)

are required to be analytic respectively on two regions separated by a contour

C on theλ plane. The choice of the contourC seems to have no dynamical or

algebraic reasoning.

http://http://physics.nankai.edu.cn/lzhao
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2.1. Dressing transformations in the ultralocal gauge – Poisson-Lie

symmetries

Every classical integrable soliton equation admits a zero curvature description

which is the compatibility condition for the Lax equations

DµT (x) = 0, Dµ = ∂µ − Aµ, µ = (0, 1), (26)

where the vectorAµ is called the Lax connection which encodes all the dy-

namical information of the system. UsuallyAµ takes value on some Lie

algebraG which generates the Lie groupG on which the transport matrix

T (x) ≡ T (x, 0) = P exp(
∫ x

0 A1(x, t)dx) lives. It is clear from (26) that the

transport matrixT (x) is defined up to the right multiplication by a constant

group element. This degree of freedom is removed by the standard normaliza-

tion condition

T (0, 0) = 1, T (x, z) = T (x, y)T (y, z). (27)

http://http://physics.nankai.edu.cn/lzhao
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For a large number of integrable models there exist the so-called fundamental

Poisson relation (FPR)

{L(x)⊗, L(y)} = [r±12, L(x)⊗ 1 + 1⊗ L(x)]δ(x− y), L ≡ A1, (28)

wherer± satisfy the classical Yang-Baxter equation. Such FPRs are called ul-

tralocal because they integrate into the following Poisson bracket for the trans-

port matrix:

{T (x)⊗, T (x)} = [r±, T (x)⊗ T (x)], (29)

{T (x, y)⊗, T (z, w)} = 0 if (x, y) ∩ (z, w) = ∅. (30)

For Lax systems with an ultralocal FPR, the dressing transformations are defined

as

T (x) → T g(x) = Θ±(x)T (x)g−1
± , (31)

where

Θ(x) ≡ T (x)gT−1(x), (32)

and the suffices± are in accordance with the unique factorizations

Θ(x) = Θ−(x)−1Θ+(x), g = g−1
− g+ (33)

determined by the classicalr-matricesr±.

http://http://physics.nankai.edu.cn/lzhao
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We see that the action of dressing transformations are exactly the Poisson-Lie

group action of the groupG∗ onG. In particular, the nonabelian Hamiltonian of

the dressing group action is exactly the monodromy matrixT (L) with L being

the boundary value ofx:

δXT (x) = 〈1⊗XT (L){T (L)⊗, T (x)}〉2. (34)

The induced transformation on the Lax connection takes the form of a gauge

transformation, i.e.

Aµ(x) → Ag
µ(x) = ∂µΘ±(x)Θ−1

± (x) + Θ±(x)Aµ(x)Θ−1
± (x). (35)

However, these must beform-preserving gauge transformationswhich maps one

solution to the soliton equation to another. In particular, theychangethesoliton

numberas well as thetotal energyof the system.

http://http://physics.nankai.edu.cn/lzhao
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2.2. Non-ultralocal gauges

– Ultralocal gauge does not always exist for soliton systems, e.g. Riemann-

Sigma models are not ultralocalizable.

– Ultralocal gauges are extremely difficult to find, even if they do exist.

– Needs a description of dressing transformations which is essentially indepen-

dent of the ultralocality of the gauge choice for the Lax system.

The FPR written in a generic (non-ultralocal) gauge takes the form

{L(x)⊗, L(y)} = ([r + s, L(x)⊗ 1] + [r − s, 1⊗ L(x)]) δ(x−y)+2sδ′(x−y),

(36)

wherer is antisymmetric under the exchange of its two tensor product compo-

nents, whiles is symmetric under the same exchange. It should be reminded

that any FPR can be casted into the above form, withr ands being possibly

dynamical.

Whens = 0, the FPR (36) degenerates into (28). In the presence of generic

s, ther in (36) no longer satisfies the classical Yang-Baxter equation, and this

renders the factorization problem (33) more complicated.

http://http://physics.nankai.edu.cn/lzhao
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Way Out:

{D(x)⊗, D(y)} = [r̂ + ŝ, D(x)⊗ 1] + [r̂ − ŝ, 1⊗ L(x)], (37)

whereD(x) = D1, r̂ = rδ(x−y), ŝ = sδ(x−y). The condition that (37) obeys

Jacobian identity implies the following equations,

[d12, d13 + d23] + [d32, d13] = 0, (38)

[c12, c13 + c23] + [c32, c13] = 0, (39)

whered12 ≡ r12 + s12, d21 ≡ Pd12P = −(r12 − s12) ≡ −c12. The equations

(38,39) are known as modified classical Yang-Baxter equations.

Introduce two linear mapsRd andRc onG,

Rd : G → G, Rd(A) ≡ 〈d12, 1⊗ A〉2,
Rc : G → G, Rc(A) ≡ 〈c12, A⊗ 1〉1, ∀A ∈ G.

r12 = rabXa ⊗Xb, s12 = sabXa ⊗Xb,

http://http://physics.nankai.edu.cn/lzhao
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Rd(A) = (rab + sab)Xa〈Xb, A〉
= −(rab − sab)〈Xa, A〉Xb = −Rc(A).

One can simply write

R(A) ≡ Rd(A) = −Rc(A).

Applying the operation〈A⊗B, ·〉12 to the FPR (37), one gets

{D(A), D(B)} = 〈D, [R(A), B] + [A, R(B)]〉 ≡ D([A, B]R), (40)

where[A, B]R ≡ [R(A), B]+[A, R(B)] is called the Baxter-Lie bracket. Notice

that in writing (40), we have taken∂ as the generator of a one dimensional Lie

algebra independent ofG, with 〈∂,G〉 = 0. The symbolD(A) is defined as

D(A) = 〈D, A〉.

http://http://physics.nankai.edu.cn/lzhao
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The condition for the left hand side of (40) to satisfy Jacobi identities now be-

comes the same condition for[A, B]R to satisfy Jacobi identity, i.e. the lin-

earized form of the modified classical Yang-Baxter equation,

[RA,RB]−R([RA,B] + [A, RB]) = −[A, B]. (41)

It follows immediately that the following classical Yang-Baxter equations hold,

[R±A, R±B]−R±([R±A, B] + [A, R±B]) = 0, (42)

where

R± ≡
1

2
(R± 1) .

The images ofR± in G,

G± ≡ =mR± ⊂ G (43)

are respectively Lie algebras which commutes with each other, thanks to (42).

Moreover,R± are also homomorphisms fromGR (i.e. the setG equipped with

the Lie bracket[, ]R) to G,

(R± 1)[X, Y ]R = [(R± 1)X, (R± 1)Y ]. (44)

http://http://physics.nankai.edu.cn/lzhao
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ForX ∈ G, we need to make the unique factorization

X = X+ −X−.

This can be achieved as follows,

X = X+ −X− ≡
1

2
(R + 1)X − 1

2
(R− 1)X. (45)

Since the operatorR is uniquely determined by ther ands matrices as shown

above, this factorization is also unique, and correspondingly the group element

factorizationg = g−1
− g+ is also uniquely determined. With this solution of the

factorization problem, the dressing transformation in the non-ultralocal case can

be performed in exactly the same way as in the ultralocal case.

– Everything works smoothly and it seems that there isn’t much differences be-

tween ultralocal and non-ultralocal cases.

—–Anonymous

No! The structure of the dressing group is significantly modified by the gauge

choice!We shall illustrate the differences below using simple examples.

http://http://physics.nankai.edu.cn/lzhao
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3. Examples

3.1. Toda fields

Let us start by recalling the Lax pair of Toda field theory in the ultralocal gauge:

∂±T (x) = A±T (x),

A± = ±
[
1

2
∂±Φ + exp

(
∓1

2
adΦ

)
E±

]
, (46)

Φ =
∑

ϕiHi, E± =
∑

E±i,

– {Hi, E±i}: the Chevalley basis for the Lie algebraG. FPR:

{L(x)⊗, L(y)} = [r±, L(x)⊗ 1 + 1⊗ L(y)]δ(x− y),

r± = ±1

2
[
∑
ij

(K−1)ijHi ⊗Hj + 2
∑

α∈∆+

E±α ⊗ E∓α],

K is the symmetrized Cartan matrix ofG.

http://http://physics.nankai.edu.cn/lzhao
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The factorization problem is now solved with the aid ofr±:

R±(Hi) = ±1

2
Hi, R±(E±α) = ±E±α, R±(E∓α) = 0. (47)

This factorization is completely symmetric in the+ and the− parts. In particu-

lar, the Cartan subalgebra generators appear in both the+ and the− subalgebras

of the dressing algebra. This+ − symmetry will be lost if we were working in

a non-ultralocal gauge as will be shown below in (49).
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Change the working gauge by setting

Ψ(x) ≡ exp

(
1

2
Φ

)
T (x).

In the gauge withΨ(x) playing the role of transport matrix, one has the Lax pair

∂+Ψ(x) = (∂+Φ + E+) Ψ(x), ∂−Ψ(x) = − [exp (adΦ) E−] Ψ(x). (48)

One has

{L(x)⊗, L(y)} = ([r + s, L(x)⊗ 1] + [r − s, 1⊗ L(x)]) δ(x−y)+2sδ′(x−y),

with

s =
∑
ij

(K−1)ijHi ⊗Hj,

r =
∑

α∈∆+

(Eα ⊗ E−α − E−α ⊗ Eα) mod CΠ,

Π =
∑
ij

(K−1)ijHi ⊗Hj +
∑

α∈∆+

(Eα ⊗ E−α + E−α ⊗ Eα) .

http://http://physics.nankai.edu.cn/lzhao
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One can write

d12 = r12 + s12 =
∑
ij

(K−1)ijHi ⊗Hj +
∑

α∈∆+

(Eα ⊗ E−α − E−α ⊗ Eα) .

This leads to the linear mapR, with

R(Hi) = Hi, R(E±α) = ±E±α.

Consequently, one has

R+(Eα) = Eα, R+(E−α) = 0, R+(Hi) = Hi,

R−(Eα) = 0, R−(E−α) = −E−α, R−(Hi) = 0. (49)

Thus for∀X ∈ G, a unique factorizationX = X+ −X− is given explicitly.

–Notice the sharp contrast between the solutions (47) (for ultralocal case) and

(49) (for non-ultralocal case) to the factorization problem!
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Dressing of the Toda fields:

According to the form of the Lax equation (48), the following vectors

ξ(ρ) ≡ 〈λ(ρ)
max|Ψ(x), ξ̄(ρ) ≡ Ψ−1(x) exp(Φ)|λ(ρ)

max〉

are respectively chiral and antichiral,

∂−ξ(ρ) = ∂+ξ̄(ρ) = 0.

The dressing transformation ofΨ(x) naturally induces the transformation for

ξ(ρ) andξ̄(ρ):

ξ(ρ) → ξ(ρ)g−1
− , ξ̄(ρ) → g+ξ̄(ρ). (50)

Therefore, one has

exp(λ(ρ)
max · Φ) = ξ(ρ) · ξ̄(ρ) → ξ(ρ)g−1

− g+ξ̄(ρ) = ξ(ρ)gξ̄(ρ). (51)

More concretely, writing

Θ± = K±M±

whereM± are group elements generated byE±α, K± belong to the Cartan sub-

group and, in particular,K− = 1. One finds thatΦ transforms according to

Φ → Φ + ln K+.
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3.2. Principal chiral model

The model is defined via the Lagrangian density

L = −1

4
〈JµJ

µ〉, Jµ = ∂µgg−1, g ∈ G.

The equation of motion and the Lax connection are respectively given by

∂µJ
µ = 0,

A0 =
λJ1 + J0

λ2 − 1
, A1 = L =

λJ0 + J1

λ2 − 1
.

The FPR can be directly evaluated, using the standard canonical Poisson brack-

ets for the fundamental fields, yielding

{L(x, λ)⊗, L(y, µ)} = [(r + s)(λ, µ), L(x, λ)⊗ 1]δ(x− y)

+[(r − s)(λ, µ), 1⊗ L(y, µ)]δ(x− y)

+2s(λ, µ)δ′(x− y), (52)

where

s(λ, µ) =
λ + µ

(λ2 − 1) (µ2 − 1)
Π,

Π is the symmetric tensor Casimir operator ofG,

Π = gabXa ⊗Xb.
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Since the gauge group for the Lax connection is notG but ratherG̃, the loop

group based onG, the matrixr(λ, µ) is only determined modulo a constant

multiple of the symmetric tensor CasimirΠ̃ of G̃, i.e.

r(λ, µ) =
1

λ− µ

(
λ2

λ2 − 1
+

µ2

µ2 − 1

)
Π mod CΠ̃,

〈Π̃, X2〉 = X, ∀X ∈ G̃.

Following the last section, one can rewrite the FPR (52) into the form

{D(x, λ)⊗, D(y, µ)} = [d̂12(λ, µ), D(x, λ)⊗ 1] + [ĉ12(λ, µ), 1⊗D(y, µ)],

whered̂12 = d12δ(x− y), ĉ12 = c12δ(x− y), and

d12 =

{
1

λ− µ

(
λ2

λ2 − 1
+

µ2

µ2 − 1

)
+

λ + µ

(λ2 − 1) (µ2 − 1)

}
Π

=

(
2

λ− µ

µ2

µ2 − 1

)
Π,

c12 = −d21.

http://http://physics.nankai.edu.cn/lzhao
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Substituting the expressions ford12 andc12 back into (38,39), one sees that the

factor µ2

µ2−1 appears in every term in the modified Yang-Baxter equation, which

means that the modified Yang-Baxter equation holds true independent of this

algebraically trivial factor. For this reason, one can simply drop this factor while

defining the linear mapR over the loop algebrãG, i.e. introduce the mapR as

R[X(λ)] =

∮
dµ

2πi

µ2 − 1

µ2 tr2 {d12(λ, µ) [1⊗X(µ)]} .

Consequently,

R± [X(λ)] ≡ 1

2
(R± 1) [X(λ)] =

1

2

(
R[X(λ)]± 〈Π̃, X2(λ)〉

)
is well-defined. Explicitly, forλnXa ∈ G̃, one has

[λnXa]+ =

{
λnXa, (n ≥ 0)

0, (n < 0)
,

[λnXa]− =

{
0, (n ≥ 0)

−λnXa, (n < 0)
.
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Accordingly, for∀g(λ) ∈ G̃, the factorizationg(λ) = g−1
− (λ)g+(λ) is uniquely

determined, whereg+(λ) is analytic inside the unit circle on theλ-plane, while

g−(λ) is analytic outside the unit circle on theλ-plane. Such a factorization

agrees exactly with the historical notion of Riemann-Hilbert transformations for

the principal chiral model (which is the infinitesimal form of dressing trans-

formations from the modern view point), which was invented before the rela-

tionship between dressing transformations and the Poisson-Lie structure was

understood.

Notice that theλ-independent subalgebraG lies completely inside the subalge-

braG̃+. This is another example in which the+ and− subalgebras are asymmet-

ric. The asymmetry between the+ and the− subalgebras in the dressing group

algebra may be a universal property for the dressing transformations defined in

the non-ultralocal gauges.
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The dressing group of transformations is actually the semiclassical ancestor of

quantum group symmetries (including finite quantum groups, quantum affine

algebras and Yangian doubles, each corresponds to different types of classi-

cal r-matrices). Therefore, for classical integrable systems admitting dressing

transformations, the problem of finding the quantum spectrum is fairly simple:

one simply needs to find all the states in certain highest weight representations

of the corresponding quantum groups (or quantum affine algebras or Yangian

doubles etc).
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4. Potential Application

– I’m pretty aware that this is a workshop on superstrings and related matters.

So why bother to talk about these algebraic issues here?

The answer is related to the recent advances in the study of IIB Green-Schwarz

superstring onAdS5 × S5 background.

As is well known, IIB superstring onAdS5 × S5 is dual toD = 4 N = 4

SYM in the framework of AdS/CFT correspondence. Dolan, Nappi and Witten

made some important discovery on the hidden symmetry from the SYM side

(hep-th/0308089, 0401243). They actually found a Yangian algebra symme-

try for the weakly coupled SYM. The corresponding structure on the AdS side

is just the algebra of nonlocal charges associated with the nonlocal conserved

currents. The latter was found even earlier by Bena, Polchinski and Roiban

(hep-th/0305116). The nonlocal Yangian symmetry for the IIB superstring on

AdS5 × S5 is enlarged into super Yangian symmetry by Hatsuda and Yoshida

(hep-th/0407044).
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Now the problem arises: The approaches used by Bena-Pochinski-Roiban and

Hatsuda-Yoshida are in a sense like treating the symmetries generated by non-

local conserved currents as Hamiltonian symmetries (that’s why the symmetry

algebras they found lack a classical double structure). The situation is very

much similar to the early days in the study of dressing symmetries. Since we

KNOW that the symmetries generated by the nonlocal charges are related to

dressing symmetries, their actions on the superstring variables should NOT be

Hamiltonian – there must be a Poisson-Lie group action and hence a classical

double structure.

http://http://physics.nankai.edu.cn/lzhao
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What do we need to justify the last statement?

– We need a proper worldsheet action for the IIB superstring onAdS5×S5, and

this is provided by Roiban-Siegal (hep-th/0010104) or alternatively by Metsaev-

Tseytlin (hep-th/9805028);

– We need a Lax representation for the equations of motion, and this is given by

Hatsuda-Yoshida as

[∂τ + Lτ , ∂σ + Lσ] = 0, (53)

(Lτ)M
N = − 2λ

λ2 − 1

[
λ(Jτ)M

N + (Jσ)M
N

]
, (54)

(Lσ)M
N = − 2λ

λ2 − 1

[
λ(Jσ)M

N + (Jτ)M
N

]
(55)

whereJτ,σ are right invariant vector fields on the super cosetGL(4|4)
(Sp(4)×GL(1))2 .

Another Lax pair was given earlier than Hatsuda-Yoshida by Hou et al (hep-

th/0406239) but with more complicated notations which I omit here;

– We see that the Lax structure is very much like the one for principal chiral

model and naturally bears a non-ultralocal character, so we need a method to do

dressings right from the non-ultralocal gauge – this is outlined here;

– To make the dressing procedure work, we need the explicit form for ther and

s matrices. This is still NOT presented anywhere yet! Still waiting for this KEY

input ...
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5. Conclusions

If all the necessary conditions just listed are met and all the speculations I just

outlined turns out to be correct, then it is highly hopeful that the theory of Yan-

gian doubles will play a role in the quantization of IIB Green-Schwarz superst-

ing onAdS5 × S5 background.
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Thank you! 
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Tianjin 300071, China
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