A Holographic Dual of CFT with Flavor on de Sitter Space

March 2006 @USTC

Takayuki Hirayama @ USTC Shanghai Institute for Advanced Studies \Box AdS/CFT correspondence (Maldacena '97) is an explicit example of Holography.

 \Box The most understood example is

supergravity on $AdS_5 \times S^5 \leftrightarrow 4d$ N=4 SYM

(Gubser, Klebanov, Polyakov, Witten '98) give how to compute correlation functions in CFT from supergravity. (the AdS/CFT dictionary)

 \Box Many deformations have been discussed since then.

Replacing AdS_5 by an asymptotically AdS_5 space, such as an extremal or non-extremal AdS black hole. Compactifying time direction with SUSY breaking boundary conditions. In CFT side, these modifications correspond to turning on couplings, temperature or etc.

 \Box Holography ('t Hooft '93, Susskind '94) is a more broad conjecture. If there is a consistent quantum gravity on a spacetime background, we expect there is a holographic description by a theory on one dimension less spacetime.

 \Box There many other speculation of holography.

(Strominger '01), dS/CFT, dS_p gravity \leftrightarrow CFT on d = p - 1(de Boer, Solodukhin '03) gravity on d = p Minkowski \leftrightarrow CFT on d = p - 1(Alishahiha, Karch, Silverstein and Tong '04, '05), (A)dS/dS

gravity on AdS_p or $dS_p \leftrightarrow CFT$ on dS_{p-1}

However since a string realization of these holography has been not known, their arguments are limited to be qualitative.

 \Box A special case of (A)dS/dS is

 AdS_5 gravity \leftrightarrow CFT on dS_4

This is unexpected since the original AdS/CFT tells

 AdS_5 gravity \leftrightarrow N=4 SYM on 4d Minkowski

These two descriptions are very different.

 \Box What I will study in my talk is:

- I realize (A)dS/dS setup in string theory in a probe limit.
- Then I follow the AdS/CFT dictionary (Gubser, Klebanov, Polyakov, Witten '98) which give how to compute correlation functions in CFT from supergravity.
- Then I check if resultant correlation functions are consistently understood as those on dS_4 space.

Since dS_4 has a finite temperature proportional to inverse of curvature, I will focus on the temperature effects on correlation functions and will check if the temperature effects are properly reproduced in my calculations.

- Yes! Therefore my results support (A)dS/dS.
- Then we will have a question why two very different theories can be dual to a same AdS_5 gravity.

I will speculate a certain conformal transformation relates AdS/CFT with (A)dS/dS.

Realizing (A)dS/dS setup in string theory

 \Box I use D3/D7 system. Since I will modify the supersymmetric D3/D7 system, I first give a brief review of supersymmetric D3/D7 system.

 \Box <u>CFT side</u> of supersymmetric D3/D7 system.

The low energy effective theory on N_c D3-brane is 4d N=4 SYM.

Adding N_f D7-branes, CFT becomes 4d N=2 SYM with N_f Hypermultiplets.

The D3-D7 open string introduce Hypermultiplets.

	$X_0 \cdots X_3$	$X_4 \cdots X_7$	X_8, X_9	
D3	0	X	X	D3 is located at $X_4 = \cdots = X_9 = 0$.
D7	0	0	X	D7 is located at $X_8 = m, X_9 = 0$.

The superpotential becomes $W_{N=4} + mHH_c$.

 \Box Take Large N_c and Large 't Hooft coupling limit.

Flavor physics is described by gauge invariant operators, i.e. Meson and Baryons, and the characteristic scale is the chiral condensate $\langle q\bar{q} \rangle$.

□ Gravity side of supersymmetric D3/D7 system.

The near horizon limit of D3-brane background is $AdS_5 \times S^5$ whose metric is

$$ds^{2} = R^{2}dx_{M4}^{2} + \frac{1}{R^{2}}(\underline{dR^{2} + R^{2}d\Omega_{5}^{2}}), \quad R^{2} = (X_{4})^{2} + \dots + (X_{9})^{2}$$
$$dX_{4}^{2} + \dots dX_{9}^{2} = \underline{dr^{2} + r^{2}d\Omega_{3}^{2} + dX_{8}^{2} + dX_{9}^{2}}, \quad R^{2} = r^{2} + X_{8}^{2} + X_{9}^{2}$$

□ Introduce N_f D7-branes into $AdS_5 \times S^5$ as a probe ($N_f \ll N_c$) (Karch, Katz '02). It is consistent with large N_c limit.

 \Box D7-brane world volume has 8 dimensions and extends along *M*4, *S*³ and *r* and is localized at *X*₈ and *X*₉.

Because the metric is nontrivial in r, X_8 can depend on r, i.e. $X_8 = X_8(r)$. Because of rotational symmetry, D7 is placed at $X_9 = 0$.

 \Box The induced metric becomes

$$ds^{2} = R^{2} dx_{M4}^{2} + \frac{1}{R^{2}} (dr^{2} + r^{2} d\Omega_{3}^{2} + (\frac{dX_{8}(r)}{dr})^{2} dr^{2})$$

= $h_{ab} dx^{a} dx^{b}$, $(R^{2} = r^{2} + X_{8}^{2})$

 \Box The Dirac-Born-Infeld action of D7 is then

$$S_{DBI} = -T_7 \int d^8 x \sqrt{-\det h_{ab}} \propto \int dr \ r^3 \sqrt{1 + X_8'(r)^2}$$

and this becomes an action for $X_8(r)$. The equation of motion for $X_8(r)$ is

$$\frac{d}{dr} \left(\frac{r^3 X_8'(r)}{\sqrt{1 + X_8'(r)^2}} \right) = 0$$

The asymptotic solution near AdS boundary $(r = \infty)$ is

$$X_8(r) = m + \frac{v}{r^2}.$$

Since $v \neq 0$ does not give a regular solution, v = 0 and $X_8 = m$.

 \Box Now we have obtained D7 configuration. We can use the AdS/CFT dictionary, and the CFT operator \mathscr{O} for $X_8(r)$ is known to be $\mathscr{O} \sim q\bar{q}$. (*q* is a fermion in Hypermultiplet.)

$$\mathscr{L} = \mathscr{L}_{CFT} + m\mathscr{O}$$

This is consistent with superpotential in CFT side before.

 \Box The correlation function is calculated from *AdS* gravity,

$$\left\langle \exp \int d^4 x \, m \mathcal{O}(x) \right\rangle_{CFT} \, \propto \, \lim_{r_{\infty} \to \infty} \exp \left\{ S_{DBI}(X_8(r_{\infty}) = m) \right\}$$
$$\left\langle \mathcal{O}(x) \right\rangle_{CFT} \, \propto \, \lim_{r_{\infty} \to \infty} \frac{dS_{DBI}}{dm} \propto v$$

 r_{∞} is a cutoff near AdS boundary $(r = \infty)$. In supersymmetric case the chiral condensate $\langle O \rangle \sim \langle q\bar{q} \rangle \propto v = 0$

□ The Meson spectrum is computed from fluctuations of D7 configuration.

 \Box Now we explain how to realize (A)dS/dS setup. We introduce D7 into D3 geometry $AdS_5 \times S^5$ in a different way.

 \Box As 4d Minkowski is a subspace in AdS_5 , dS_4 is also a subspace in AdS_5 . Then AdS_5 metric is written with using dS_4 metric

$$ds^{2} = r^{2}(1 - \frac{1}{4r^{2}l_{4}^{2}})^{2}dx_{dS4}^{2} + \frac{1}{r^{2}}(\frac{dr^{2} + r^{2}d\Omega_{5}^{2}}{p^{2} + \rho^{2}d\Omega_{3}^{2} + dy^{2} + dz^{2}}, r^{2} = \rho^{2} + y^{2} + z^{2}$$

 \Box Here is an explanation how dS_4 is embedded in AdS_5 . AdS_5 is a hypersurface in 6d flat space. The equation is

$$X_5^2 + \underline{X_0^2 - X_1^2 - X_2^2 - X_3^2 - X_4^2} = l_5^2$$

Similarly dS_4 is a hypersurface in 5d flat space. The equation is

$$X_0^2 - X_1^2 - X_2^2 - X_3^2 - X_4^2 = l_4^2$$

We can easily see that 4d Minkowski is embedded along $X_0, \dots X_3$.

□ Since I would like to realize dS_4 in CFT side, I embed D7-brane such that D7-brane extends dS_4 , S^3 and ρ and is localized at *y* and *z*. Since the metric is nontrivial in ρ , $y = y(\rho)$ and z = 0.

 \Box The induced metric becomes

$$ds^{2} = r^{2} \left(1 - \frac{1}{4r^{2}l_{4}^{2}}\right)^{2} dx_{dS4} + \frac{1}{r^{2}} \left(d\rho^{2} + \rho^{2} d\Omega_{3}^{2} + \left(\frac{dy(\rho)}{d\rho}\right)^{2} d\rho^{2}\right)$$

= $h_{ab} dx^{a} dx^{b}$, $(r^{2} = \rho^{2} + y^{2})$

Near AdS boundary $\rho \rightarrow \infty$, $1/l_4^2$ term becomes subleading. In CFT this is understood as dS_4 curvature is negligible in high energy limit.

□ The DBI action of D7 brane becomes

$$S_{DBI} = -T_7 \int d^8 x \sqrt{-\det h_{ab}} \propto \int d\rho (1 - \frac{1}{4r^2 l_4^2})^4 \rho^3 \sqrt{1 + y'(\rho)^2}$$

Then the equation of motion for $y(\rho)$ is

$$y''(\rho) = -3\frac{(1+y'^{2}(\rho))}{\rho}y'(\rho) + \frac{2}{l_{4}^{2}r^{2} - \frac{1}{4}}\frac{y(\rho) - \rho y'(\rho)}{r^{2}}(1+y'^{2}(\rho))$$

□ Since the solution near AdS boundary determines the CFT operator and coupling constant, we first study the asymptotic solution near AdS boundary ($\rho = \infty$).

$$y(\rho) = m \left(1 - \frac{\ln(\rho^2 + m^2)}{2l_4^2 \rho^2} \right) + \frac{v}{\rho^2}$$

Using the AdS/CFT dictionary, the CFT operator \mathcal{O} is same and is $\mathcal{O} \sim q\bar{q}$, and $y(\rho \rightarrow \infty) = m$ is the bare mass for q on dS_4 .

(We later give an explanation why this is true.)

 \Box *v* is determined so that the solution is smooth everywhere and we obtain such *v* numerically by shooting method.

□ We have D7-brane configuration. We use the AdS/CFT dictionary to compute $\langle \mathcal{O} \rangle$. ($y(\infty) = m$)

$$\langle \mathscr{O}(x) \rangle \propto \lim_{\rho_{\infty} \to \infty} \frac{d(S_{DBI} + S_C)}{dm}$$

where ρ_{∞} is the cutoff near AdS boundary $\rho = \infty$ and S_c is the counter term defined at $\rho = \rho_{\infty}$ since S_{DBI} itself is divergent.

$$S_{c} = T_{7}\Omega_{3}\int d^{4}x\sqrt{-\gamma} \left[\frac{1}{4} - \frac{y^{2}}{2\rho^{2}} - \frac{1}{4\rho^{2}l_{4}^{2}} + \left(\frac{3}{8l_{4}^{4}\rho^{4}} + \frac{y^{2}}{l_{4}^{2}\rho^{4}}\right)\left\{(c_{1}+1)\ln(l_{4}\rho) + c_{1}\ln\frac{y}{\rho}\right\}$$
$$+ c_{2}\frac{y^{4}}{\rho^{4}} + c_{3}\frac{1}{\rho^{4}l_{4}^{4}} + c_{4}\frac{y^{2}}{\rho^{4}l_{4}^{2}}\right]\Big|_{\rho=\rho_{\infty}, y=y(\rho_{\infty})}$$

where γ is the induced metric in AdS_5 at constant ρ . $c_1 \cdots c_4$ are finite counter terms. (cf. Bianchi, Freedman, Skenderis, '01)

 \Box Then using AdS/CFT dictionary,

$$\langle \mathscr{O}(x) \rangle \propto v + \frac{m}{l_4^2} (A + B \ln m), \quad A = 2(c_1 + 1) \ln l_4 + c_1 + 2c_4, \quad B = 2c_1,$$

We fix *A* and *B* as follows. The curvature l_4 collections should be negligible as $m \gg 1/l_4$ since massive field should be insensitive to low energy $1/l_4$ collections. Therefore we fix *A* and *B* such that $\langle \mathcal{O}(x) \rangle \to 0$ as $m \gg 1/l_4$ limit.

□ Then we obtain A = 0 and B = 1 numerically and thus the final results of chiral condensate $\langle O(x) \rangle$ are

 \Box First it is actually nontrivial if $\langle \mathcal{O}(x) \rangle \to 0$ is realizable using *A* and *B*, since v(m) can be an arbitrary function of *m*.

Thus it is a nontrivial check of AdS/CFT dictionary.

 \Box Second, this is totally different from supersymmetric case where $\langle \mathcal{O}(x) \rangle = 0$ always.

 \Box This behaviour is very similar to that studied from *AdS* black hole. (CFT is CFT at finite temperature.) (Babington, Erdmenger, Evans, Guralnik, Kirsch, '03)

Figure 4: The chiral condensate from AdS Schwarzschild black hole. Copied from hep-th/0306018

 \Box Therefore we have seen that the chiral condensate shows a proper finite temperature

dependence.

 \Box We have also studied the meson spectrum from fluctuation of D7-brane configuration, and the quark anti-quark static potential from Wilson line in my setup and all of them have expected temperature dependence.

In meson spectrum, we find confinement and deconfinement phases.

In quark anti-quark potential, we find the string tension is reduced by the dS_4 curvature.

 \Box Therefore our results give positive supports on (A)dS/dS.

Why succeeded?

 \Box Then the next question is why we have obtained reasonable results. Why can two different theories be dual to a same AdS_5 gravity? I will give a speculation. I again study a field and operator matching in AdS/CFT dictionary of original AdS/CFT.

 \Box Let us study a scalar field in AdS_5 with mass M

$$S = \int d^5x \sqrt{-g_{AdS}} \left(-(\partial \phi)^2 - M^2 \phi^2 \right).$$

 \Box Consider a static solution along dS_4 directions. The asymptotic solution near AdS boundary is

$$\phi(u) = c_1 u^{\alpha_+} + c_2 u^{\alpha_-}, \quad \alpha_{\pm} = -2 \pm \sqrt{4 + M^2},$$

here I use the AdS_5 metric

$$ds_{AdS5}^{2} = \left(u^{2} - \frac{1}{l_{4}^{2}}\right) dx_{dS4}^{2} + \left(u^{2} - \frac{1}{l_{4}^{2}}\right)^{-1} du^{2}, \quad dx_{dS4}^{2} = \frac{l_{4}^{2}}{s^{2}} \left(-ds^{2} + dx_{i}^{2}\right)$$

The coordinate transformation

$$u = Rt/l_4, \quad s = (t^2 - 1/R^2)^{1/2}$$

changes AdS₅ metric

$$ds_{AdS5}^2 = R^2 dx_{M4}^2 + \frac{1}{R^2} dR^2, \quad dx_{M4}^2 = -dt^2 + dx_i^2$$

Therefore in this coordinate system, the asymptotic solution becomes

$$\phi(u) = c_1 (Rt/l_4)^{\alpha_+} + c_2 (Rt/l_4)^{\alpha_-}$$

 \Box Then using the original AdS/CFT, since $\phi(u) \propto c_1(t/l_4)^{\alpha_+}$ in $R \to \infty$ limit we obtain

$$\mathscr{L} = \mathscr{L}_{M4} + c_1 (t/l_4)^{\alpha_+} \mathscr{O}(x), \quad S = \int \sqrt{g_{M4}} \mathscr{L}$$
$$\langle \mathscr{O}(x) \rangle \propto \lim_{R_{\infty} \to \infty} \frac{\delta S}{(Rt/l_4)^{\alpha_+} \delta c_1} \Big|_{c_1 \to 0} \propto c_2 (t/l_4)^{\alpha_-}$$

The scaling dimension of $\mathscr{O}(x)$ is $4 + \alpha_+$.

 \Box Therefore we were studying time dependent mass term for quarks (thus SUSY is broken) and were studying the responses to it.

 \Box Since dS_4 is conformal to flat Minkowski, we act the conformal transformation (+ scale transformation to fields)

$$g_{M4} = \Omega^{-2} g_{dS4}, \qquad \Omega = \frac{l_4}{t}.$$

Then

$$c_1(t/l_4)^{\alpha_+} \mathscr{O}(x) \to \Omega^{-4} \Omega^{-\alpha_+} \Omega^{4+\alpha_+} \mathscr{O}(x)$$

$$\langle \mathscr{O}(x) \rangle \propto c_2(t/l_4)^{\alpha_-} \to \langle \Omega^{4+\alpha_+} \mathscr{O}(x) \rangle \propto c_2 \Omega^{-\alpha_-}, \quad (\alpha_{\pm} = -2 \pm \sqrt{4+M^2})$$

and the action becomes,

$$\mathscr{L} = \mathscr{L}_{dS4} + c_1 \mathscr{O}(x), \qquad S = \int \sqrt{g_{dS4}} \mathscr{L}$$
$$\langle \mathscr{O}(x) \rangle \propto c_2$$

These coupling and the VEV are the exactly ones obtained from (A)dS/dS!

□ We studied D7 configuration which is static along dS_4 . In AdS/CFT picture, we were studying time dependent mass for quarks. In (A)dS/dS picture, we were studying constant mass for quarks on dS_4 . And these two are related by a certain conformal transformation.

 \Box This is naive argument, but a conformal transformation from flat to dS_4 connect AdS/CFT with (A)dS/dS.

□ Summary

- We realize (A)dS/dS setup in a D3/D7 system where D7 is treated as a probe.
- We follow the AdS/CFT dictionary to compute the chiral condensate in CFT.
- The resultant chiral condensate is consistently understood as that on dS_4 .
- Therefore our results give a support on (A)dS/dS.
- We speculated a conformal transformation relates AdS/CFT with (A)dS/dS.
- \Box Some future directions
- Construct a model much closer to QCD
- Introduce chemical potential and study phase diagram Apply to physics of early universe
- study quantum theory on dS_4 in more detail. (α vacua)

• phenomenological application.

We realized dS_4 space from string theory and the localized gravity in D3/D7 system has been discussed (Fitzpatrick, Randall '05).

Thank you!