The dark matter self-interaction and its impact on the critical mass for dark matter evaporations inside the Sun

Yen-Hsun Lin
in collaboration with C.-S. Chen, F.-F. Lee and G.-L. Lin

Institute of Physics
Nat’l Chiao Tung University, Taiwan
Outline

1. Motivations of self-interaction (SI) dark matter (DM) & evaporation
2. Schematic view of SIDM
3. Modification to DM evolution equation
4. When would self-interaction effect be significant?
5. The behavior of N_χ and its effect to the annihilation rate
6. Implication to DM indirect searches
7. Summary
Motivations

1 **Indirect search’s perspective:**
 - IceCube-PINGU can probe $1 \text{ GeV} \leq E_\nu \leq 10 \text{ GeV}$ in the future,
 - This range is favored by some DM direct search,
 - DM evaporation can not be ignored,
 - SIDM can enhance the annihilation rate,
 - As well as lower the evaporation mass, m_{ev}.

2 **Astrophysical perspective:**
 - SIDM can alleviate the core/cusp problem.

3 **Theoretical perspective:**
 - Asymmetric DM model also favors in this mass range.
Schematic view of SIDM

\[\chi p \text{ scattering}^1 \]
\[\sigma_{\chi p} \gtrsim 10^{-43} \text{ cm}^2 \]

\[\chi \chi \text{ annihilation}^2 \]
\[\Omega\chi \approx \frac{3 \times 10^{-27} \text{ cm}^3 \text{ s}^{-1}}{\langle \sigma_{A\nu} \rangle} \]

\[\chi \chi \text{ self-interaction}^3 \]
\[\frac{\sigma_{\chi\chi}}{m_\chi} \lt 1.7 \times 10^{-24} \text{ cm}^3 \text{ GeV}^{-1} \]

Schematic view of SIDM

Before

- $v^\chi > v_{esc}$
- DM in the halo

After

- $v'^\chi < v_{esc}$
- DM captured by the Sun
Schematic view of SIDM

Situations after DM-DM scattering:
- both captured,
- one captured, the other escaped,
- both eject.

The possibilities of last two is extremely small comparing to the first in the Sun.

The self-interaction rate, C_s, is proportional to

$$C_s \propto n_\chi \sigma_{\chi \chi} F(\bar{\nu}_\chi, \nu_\odot, \text{esc})$$

4 The detail mathematical argument contains these three possibilities has been discussed by Zentner in Phys. Rev. D 80, 063501 (2009).
The DM evolution equation

The evolution equation of DM in the Sun with self-interaction, C_s, and evaporation, C_e:

$$ \frac{dN}{dt} = C_c + C_s N - C_e N - C_a N^2. $$

The differential equation is a Riccati equation and can be solved analytically. The kinematic coefficients:

- C_c: for capture,
- C_e: for evaporation,
- C_a: for annihilation.

All have been well-investigated in recent studies5.

The solution to the evolution equation thus gives:

\[N(t) = \frac{C_c \tanh(t/\tau_A)}{\tau_A^{-1} - (C_s - C_e) \tanh(t/\tau_A)/2} \]

where \(\tau_A \) is the time-scale to reach equilibrium and

\[\tau_A = \frac{1}{\sqrt{C_c C_a + (C_s - C_e)^2/4}}. \]

Assuming \(\tanh(t/\tau_A) \sim 1 \):

\[N_{eq} = \frac{C_s - C_e}{2C_a} + \sqrt{\frac{(C_s - C_e)^2}{4C_a^2}} + \frac{C_c}{C_a}. \]
The DM evolution equation

Absence of C_s^6:

\[N(t) = \frac{C_c \tanh(t/\tau_A)}{\tau_A^{-1} + C_e \tanh(t/\tau_A)/2}, \quad N_{\text{eq}} = -\frac{C_e}{2C_a} + \sqrt{\frac{C_e^2}{4C_a^2} + \frac{C_c}{C_a}} \]

Absence of both C_s and C_e^7:

\[N(t) = \sqrt{\frac{C_c}{C_a}} \tanh(\sqrt{C_cC_a} t), \quad N_{\text{eq}} = \sqrt{\frac{C_c}{C_a}}. \]

When would SI or evap. becomes crucial?

Making some arrangement of the DM number in the Sun,

\[N_{eq} = \sqrt{\frac{C_c}{C_a}} \left(\sqrt{\frac{(C_s - C_e)^2}{4C_c C_a}} + \sqrt{\frac{(C_s - C_e)^2}{4C_c C_a}} + 1 \right) \]

and we define the parameter, \(R_{se} \):

\[R_{se} \equiv \frac{(C_s - C_e)^2}{C_c C_a} \]

Hence we have

\[\begin{cases} R_{se} > 1, & \text{SI or evap. is important;} \\ R_{se} < 1, & \text{SI or evap. becomes irrelavant,} \end{cases} \]

for convenience.
R_{se} over $(\sigma_{\chi p}, \sigma_{\chi\chi})$-plane

The SI is significant when m_χ becomes lighter, $\mathcal{O}(1)$ GeV.
The equilibrium state, \(\tanh(t/\tau_A) \sim 1 \)

The equilibrium time-scale

\[
\tau_A = \frac{1}{\sqrt{C_c C_a + (C_s - C_e)^2/4}},
\]

thus, the equilibrium state means

\[
\tanh(t/\tau_A) \sim 1.
\]

\(\tau_A \) is much more shorten comparing to \(C_s = C_e = 0 \).
The equilibrium state, $\tanh(t/\tau_A) \sim 1$

- $\sigma_{\chi p}$: smaller than the LUX bound8,
- $\sigma_{\chi\chi}$: not violating Bullet cluster constraint9 $\sigma_{\chi\chi}/m_\chi < 1.7 \times 10^{-24}$ cm2 GeV$^{-1}$.

tanh(t/τ_A) over ($\sigma_{\chi p}, \sigma_{\chi \chi}$)-plane
Effect of self-interaction and evaporation to DM

Behavior of N_χ

If self-interaction exists, it will also delay the happening of evaporation. We are able to probe smaller m_χ.

\[\sigma_{\chi p} = 10^{-44} \text{ cm}^2 \]

\[\sigma_{\chi \chi} = 10^{-24} \text{ cm}^2 \]

\[\sigma_{\chi \chi} = 10^{-25} \text{ cm}^2 \]

No self–interaction

\[N_\chi \]

\[m_\chi \text{ [GeV]} \]
Enhancement to the annihilation rate

The DM annihilation rate gives: \(\Gamma_A \propto C_a N^2_\chi \).

\[\sigma_{\chi p} = 10^{-44} \text{ cm}^2 \]

\[m_\chi [\text{GeV}] \]

\[\Gamma_A [\text{s}^{-1}] \]
Indirect search: IceCube-PINGU

The Precision IceCube Next Generation Upgrade: PINGU\(^\text{10}\)

\(^{10}\)Aartsen et al., arXiv:1401.2046 (2014).
Neutrinos from DM annihilation in the Sun

The differential neutrino flux from DM annihilation in the Sun is given by

$$\frac{d\Phi_\nu}{dE_\nu} = \frac{\Gamma_A(m_\chi, \sigma_{\chi p}, \sigma_{\chi\chi})}{4\pi R^2} P_{\nu_i \rightarrow \nu_j}(R, E_\nu) \sum_f B_f \left(\frac{dN_\nu}{dE_\nu} \right)_f$$

where:

- dN_ν/dE_ν: ν-spectrum at the source, taking care by WimpSim11,
- B_f: branching ratio,
- $P_{\nu_i \rightarrow \nu_j}$: ν-oscillation effect through the propagation,
- Γ_A: the annihilation rate,
- R: propagation distance, 1 A.U.

11Blennow et al., JCAP 01, 21 (2008).
Atmospheric background

The major atmospheric backgrounds12 are ν_e and ν_μ. During the night, atmospheric ν-oscillation in matter via the propagation is also taking into consideration.

Event rate

The event rate of DM signals/ATM backgrounds is given by

\[N_\nu = \int \frac{d\Phi_\nu}{dE_\nu d\Omega} A^\text{eff}_\nu(E_\nu) dE_\nu d\Omega \]

where \(A^\text{eff}_\nu(E_\nu) \) is the detector contained effective area and can be estimated by the detector effective volume, \(V^\text{eff}(E_\nu) \), through:

\[A^\text{eff}_\nu(E_\nu) \propto V^\text{eff}(E_\nu)[n_p\sigma_{\nu p}(E_\nu) + n_n\sigma_{\nu n}(E_\nu)] \]

with:

- \(\sigma_{\nu p/n} \): \(\nu \)-proton/neutron cross section,
- \(n_{p/n} \): neutron/proton number density.
Constraints on $\sigma_{\chi\chi}$
1. The general DM evolution equation with SI & evap. effects is solvable.
2. In the low m_χ region, $\mathcal{O}(1)$ GeV, SI or evap. is important.
3. The existence of SI effect lowers the evaporation mass and allow us to probe smaller m_χ.
4. SI and evap. effects also shorten the equilibrium time-scale.
5. It is testable via indirect searches such as IceCube-PINGU/JUNO.