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Introduction

Symmetries are crucial mathematical structures that underpin
numerous physical theories.

The asymptotic symmetry analysis helps to reveal potential dual field
theories of black holes.

Known examples: (W)AdS/(W)CFT, Kerr/CFT, · · ·
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Introduction (extremal Kerr)

The near horizon extreme Kerr scaling geometry (NHEK)

ds̄2 = 2GJΩ2

(
−(1 + r2)dτ2 +

dr2

1 + r2
+ dθ2 + Λ2(dϕ+ rdτ)2

)
.

The non-trivial asymptotic symmetry can be specified by the following
boundary conditions [Guica, Hartman, Song and Strominger, 2009]

hττ = O(r2) hτϕ = O(1) hτθ = O(r−1) hτ r = O(r−2)
hϕτ = hτϕ hϕϕ = O(1) hϕθ = O(r−1) hϕr = O(r−1)
hθτ = hτθ hθϕ = hϕθ hθθ = O(r−1) hθr = O(r−2)
hrτ = hτ r hrϕ = hϕr hrθ = hθr hrr = O(r−3)

 ,

The most general diffeomorphisms which preserve the falloffs are of
the form

ζ = (−rε′(ϕ)+O(1))∂r+(C+O(r−3))∂τ+(ε(ϕ)+O(r−2))∂ϕ+O(r−1)∂θ .

The asymptotic symmetry contains one copy of the conformal group

ζε = ε(ϕ)∂ϕ − rε′(ϕ)∂r , i [ζm, ζn] = (m − n)ζm+n .

Jianfei Xu (SEU) August 29, 2024 4 / 41



Introduction (extremal Kerr)

The near horizon extreme Kerr scaling geometry (NHEK)

ds̄2 = 2GJΩ2

(
−(1 + r2)dτ2 +

dr2

1 + r2
+ dθ2 + Λ2(dϕ+ rdτ)2

)
.

The non-trivial asymptotic symmetry can be specified by the following
boundary conditions [Guica, Hartman, Song and Strominger, 2009]

hττ = O(r2) hτϕ = O(1) hτθ = O(r−1) hτ r = O(r−2)
hϕτ = hτϕ hϕϕ = O(1) hϕθ = O(r−1) hϕr = O(r−1)
hθτ = hτθ hθϕ = hϕθ hθθ = O(r−1) hθr = O(r−2)
hrτ = hτ r hrϕ = hϕr hrθ = hθr hrr = O(r−3)

 ,

The most general diffeomorphisms which preserve the falloffs are of
the form

ζ = (−rε′(ϕ)+O(1))∂r+(C+O(r−3))∂τ+(ε(ϕ)+O(r−2))∂ϕ+O(r−1)∂θ .

The asymptotic symmetry contains one copy of the conformal group

ζε = ε(ϕ)∂ϕ − rε′(ϕ)∂r , i [ζm, ζn] = (m − n)ζm+n .

Jianfei Xu (SEU) August 29, 2024 4 / 41



Introduction (extremal Kerr)

The near horizon extreme Kerr scaling geometry (NHEK)

ds̄2 = 2GJΩ2

(
−(1 + r2)dτ2 +

dr2

1 + r2
+ dθ2 + Λ2(dϕ+ rdτ)2

)
.

The non-trivial asymptotic symmetry can be specified by the following
boundary conditions [Guica, Hartman, Song and Strominger, 2009]

hττ = O(r2) hτϕ = O(1) hτθ = O(r−1) hτ r = O(r−2)
hϕτ = hτϕ hϕϕ = O(1) hϕθ = O(r−1) hϕr = O(r−1)
hθτ = hτθ hθϕ = hϕθ hθθ = O(r−1) hθr = O(r−2)
hrτ = hτ r hrϕ = hϕr hrθ = hθr hrr = O(r−3)

 ,

The most general diffeomorphisms which preserve the falloffs are of
the form

ζ = (−rε′(ϕ)+O(1))∂r+(C+O(r−3))∂τ+(ε(ϕ)+O(r−2))∂ϕ+O(r−1)∂θ .

The asymptotic symmetry contains one copy of the conformal group

ζε = ε(ϕ)∂ϕ − rε′(ϕ)∂r , i [ζm, ζn] = (m − n)ζm+n .

Jianfei Xu (SEU) August 29, 2024 4 / 41



Introduction (extremal Kerr)

The near horizon extreme Kerr scaling geometry (NHEK)

ds̄2 = 2GJΩ2

(
−(1 + r2)dτ2 +

dr2

1 + r2
+ dθ2 + Λ2(dϕ+ rdτ)2

)
.

The non-trivial asymptotic symmetry can be specified by the following
boundary conditions [Guica, Hartman, Song and Strominger, 2009]

hττ = O(r2) hτϕ = O(1) hτθ = O(r−1) hτ r = O(r−2)
hϕτ = hτϕ hϕϕ = O(1) hϕθ = O(r−1) hϕr = O(r−1)
hθτ = hτθ hθϕ = hϕθ hθθ = O(r−1) hθr = O(r−2)
hrτ = hτ r hrϕ = hϕr hrθ = hθr hrr = O(r−3)

 ,

The most general diffeomorphisms which preserve the falloffs are of
the form

ζ = (−rε′(ϕ)+O(1))∂r+(C+O(r−3))∂τ+(ε(ϕ)+O(r−2))∂ϕ+O(r−1)∂θ .

The asymptotic symmetry contains one copy of the conformal group

ζε = ε(ϕ)∂ϕ − rε′(ϕ)∂r , i [ζm, ζn] = (m − n)ζm+n .

Jianfei Xu (SEU) August 29, 2024 4 / 41



Introduction (extremal Kerr)

The central term appears when considering the conserved charge
algebra under Dirac bracket {·, ·}D.B. → − i

~ [·, ·]

[Lm, Ln] = (m − n)Lm+n +
J

~
m(m2 − 1)δm,−n , ~Ln = Qζn +

3J

2
δn .

The Cardy formula with left-moving central charge cL = 12J
~ and

temperature TL = 1
2π reproduces the black hole entropy

S =
π2

3
cLTL =

2πJ

~
= SEKBH .
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Extremal Kerr-like spacetimes/WCFT

The most general Kerr-like spacetimes in four dimensions [Griffiths and
Podolsky, 2006]

ds2 =
1

Ω2

{
−

Q

ρ2

[
dt −

(
a(1− x2) + 2l(1 + x)

)
dφ
]2

+ ρ2

[
dr2

Q
+

dx2

(1− x2)P

]

+
a2(1− x2)P

ρ2

[
dt −

r2 + (a + l)2

a
dφ

]2
}
,

where

Ω = 1−
α

λ
(l − ax)r , ρ2 = r2 + (l − ax)2, P = 1 + a3x + a4x

2 ,

Q = (λ2k + e2 + g2)− 2Mr + εr2 − 2
αn

λ
r3 −

(
α2k +

Λ

3

)
r4 ,

are metric functions characterized by M, e, g , a, α, l ,Λ.
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Extremal Kerr-like spacetimes/WCFT

The horizon polynomial generically takes the form

Q = −
(
α2k +

Λ

3

)
(r − r0)(r − r1)(r − r2)(r − r3) .

Approximate Q to quadratic order

Q ≈ Q(r+) +
dQ

dr

∣∣∣
r=r+

(r − r+) +
1

2

d2Q

dr2

∣∣∣
r=r+

(r − r+)2 +O
(
(r − r+)3

)
≈ k+(r − r+)(r − rs) +O

(
(r − r+)3

)
,

where

k+ =
1

2

d2Q

dr2

∣∣∣
r=r+

= ε− 6r+
αn

λ
− 6r2

+(α2k +
Λ

3
) ,

rs = r+ −
1

k+

dQ

dr

∣∣∣
r=r+

= r+ −
1

k+

[
2r+ε− 2M − 6r2

+
αn

λ
− 4r3

+

(
α2k +

Λ

3

)]
.
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Extremal Kerr-like spacetimes/WCFT

For an extremal black hole r+ = rs , the near horizon region can be
infinitely scaled to the following geometry (with AdS2×S2)

r = r+ + δr0r̃ , t =
r0
δ

(
u − 1

r̃

)
, · · ·

ds2 = Γ(x)
(
−r̃2du2 − 2dudr̃ + σ2(x)dx2 + γ2(x)b(dϕ+ r̃ d ũ)2

)
,

where

r0 =

√
r2
+ + (a + l)2

k+
, Γ(x) =

λ2(r2
+ + (l − ax)2)

k+(λ− r+α(l − ax))2
, σ2(x) =

k+

(1− x2)P
,

b =
2r+a

k+(r2
+ + (a + l)2)

, γ2(x) =
k+(r2

+ + (a + l)2)2(1− x2)P

(r2
+ + (l − ax)2)2

,
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Extremal Kerr-like spacetime/WCFT

We impose the following boundary conditions [X. Jiang and JX, 2024]
huu = O(r̃) hur̃ = O(r̃−1) hux = O(r̃−1) huϕ = O(r̃0)
hr̃u = hur̃ hr̃ r̃ = O(r̃−3) hr̃ x = O(r̃−2) hr̃ϕ = O(r̃−2)
hxu = hux hxr̃ = hr̃ x hxx = O(r̃−1) hxϕ = O(r̃−1)
hϕu = huϕ hϕr̃ = hr̃ϕ hϕx = hxϕ hϕϕ = O(r̃−1)

 .

The most general asymptotic Killing vector that preserves this falloffs
can be found out

η =
(
f (u) +O(r̃−3)

) ∂

∂u
+
(
−r̃ f ′(u)− g ′(u) +O(r̃−1)

) ∂
∂ r̃

+O(r̃−1)
∂

∂x
+
(
g(u) +O(r̃−2)

) ∂

∂ϕ
.

Jianfei Xu (SEU) August 29, 2024 9 / 41
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Extremal Kerr-like spacetimes/WCFT

Alternatively, these B.C.s can be viewed as uplifted from the new
boundary conditions for AdS2 [Godet and Marteau, 2020],[Detournay, Smoes,

and Wutte, 2023]

ds2 = Γ(x)
(
(−r̃2 + 2P(u)r̃ + 2T (u))du2 − 2dudr̃

+ σ2(x)dx2 + γ2(x)b(dϕ+ r̃ d ũ)2
)
,

which is preserved by the leading asymptotic Killing vector

η = f (u)
∂

∂u
+ (−r̃ f ′(u)− g ′(u))

∂

∂ r̃
+ g(u)

∂

∂ϕ
.

Suppose the time coordinate u is periodic under length τ , then the

modes fn = η
(
f (u) = τ

2π e
2πinu
τ

)
and gn = η

(
g(u) = τ

2πi e
2πinu
τ

)
satisfy the classical Virasoro and U(1) Kac-Moody algebra

i [fm, fn] = (m − n)fm+n ,

i [fm, gn] = −ngm+n ,

i [gm, gn] = 0 .
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Extremal Kerr-like spacetimes/WCFT

The central extension terms appear in the covariant charge algebra.
The variation of charge associated to a vector ζ is given by [Iyer and

Wald, 1994]

δQ(ξ, h; g) =
1

16π

∫
∂Σ
∗FIW ,

with

(FIW )µν =
1

2
∇µζνh +∇µhσνζσ +∇σζµhσν +∇σhσµζν −∇µhζν − (µ↔ ν) .

For any two vector fields ξ and ζ, the charges satisfy an algebra
under Dirac bracket [Compère and Fiorucci, 2018]

{Qξ,Qζ} = Q[ξ,ζ] + Kζ,ξ, Kζ,ξ = δQ(ξ,Lζg ; g) .
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Extremal Kerr-like spacetimes/WCFT

Charges can be shown to be integrable on the backgrounds satisfying
the new B.C.s. One can define the variation of the metric according to

hµν =
δgµν

δP(u)
δP(u) +

δgµν

δT (u)
δT (u) .

Then the variation of charge associated to the asymptotic Killing
vector can be written as

δQ(η, h; g) =
1

8π

∫ 1

−1

∫ τ

0
bΓ(x)σ(x)γ(x) (g(u)δP(u)− f (u)δT (u)) dxdu ,

which is explicitly integrable with the finite charge

Q(η, h; g) =
1

8π

∫ 1

−1

∫ τ

0
bΓ(x)σ(x)γ(x) (g(u)P(u)− f (u)T (u)) dxdu .
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Extremal Kerr-like spacetimes/WCFT

The charge variations associated to the mode vectors

δLextn = δQ(fn, h; g), δPext
n = δQ(gn, h; g) ,

will form the warped conformal algebra

{Lextn , Lextm } = (m − n)Lextm+n + K ext
m,n, K ext

m,n = δQ(fn,Lfmg ; g) ,

{Lextn ,Pext
m } = mPext

m+n + Rext
m,n, Rext

m,n = δQ(fn,Lgmg ; g) ,

{Pext
n ,Pext

m } = kextm,n, kextm,n = δQ(gn,Lgmg ; g) ,

with central extensions

δQ(fn,Lfmg ; g) = 0 ,

δQ(fn,Lgmg ; g) = i
λ2r+aτ

2πk+(λ− r+α(a + l))(λ+ r+α(a− l))
m2δm,−n ,

δQ(gn,Lgmg ; g) = i
λ2r+aτ2

4π2k+(λ− r+α(a + l))(λ+ r+α(a− l))
mδm,−n .
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Extremal Kerr-like spacetimes/WCFT

In a standard form of the most general warped conformal algebra

{Lextn , Lextm } = (m − n)Lextm+n + i
cext

12
m3δm,−n ,

{Lextn ,Pext
m } = mPext

m+n + iκextm2δm,−n ,

{Pext
n ,Pext

m } = i
κext

2
mδm,−n ,

the central charges now read as

cext = 0,

κext =
λ2r+aτ

2πk+(λ− r+α(a + l))(λ+ r+α(a− l))
,

κext =
λ2r+aτ2

2π2k+(λ− r+α(a + l))(λ+ r+α(a− l))
.
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Extremal Kerr-like spacetimes/WCFT

The mixed central terms can be eliminated by a charge redefinition

L∗extn = Lextn +
2κext

κext
nPext

n , P∗extn = Pext
n .

which leads to the standard warped conformal algebra

{L∗extn , L∗extm } = (m − n)L∗extm+n + i
c∗ext

12
m3δm,−n ,

{L∗extn ,P∗extm } = mP∗extm+n ,

{P∗extn ,P∗extm } = i
κ∗ext

2
mδm,−n .

with

c∗ext =
12λ2r+a

k+(λ− r+α(a + l))(λ+ r+α(a− l))
,

κ∗ext =
λ2r+aτ2

2π2k+(λ− r+α(a + l))(λ+ r+α(a− l))
.
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Non-extremal Kerr-like spacetimes/WCFT

For a non-extreme case, the near horizon geometry is a Rindler space
without conformal symmetry.

A geometry with conformal symmetry is not a necessary condition
for the interactions to exhibit conformal invariance.

In the non-extremal case, the conformal symmetry hides in the
solution space of perturbations.

Consider a scalar perturbation Φ = e−iωt+imφS(θ)R(r) on Kerr. In
the low frequency limit ω � 1/M, divide the radial coordinate into
near and far regions, the hidden conformal symmetry acts on the near
region field solution space. [Castro, Maloney and Strominger, 2010]
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Non-extremal Kerr-like spacetimes/WCFT

The hidden conformal symmetry from conformally coupled scalar
perturbations. The KG equation

(∇µ∇µ − χR)Φ = 0 ,

is not separable due to the metric conformal factor.

Therefor we
perform a Weyl transformation g̃µν = Ω2gµν and Φ̃ = Ω−1Φ, so that
the transformed scalar equation [X. Jiang and JX, 2024]

(∇̃µ∇̃µ − χR̃)Φ̃ = 0 ,

is separable and the separated angular and radial equations under the
ansatz Φ̃ = e−iωt+imφR(r)S(x) are
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Non-extremal Kerr-like spacetimes/WCFT

d

dr

(
Q

dR(r)

dr

)
+

[(
(r2 + (a + l)2)ω − am

)2

Q
+

Q′′

6

]
R(r) = KR(r) ,

d

dx

(
(1− x2)P

dS(x)

dx

)
−
[((

a(1− x2) + 2l(1 + x)
)
ω −m

)2

(1− x2)P

+
2P + 4xP′ − (1− x2)P′′

6

]
S(x) = −KS(x) ,

which are all Heun-type equations.
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Non-extremal Kerr-like spacetimes/WCFT

Near the horizon, the radial equation can be approximately written as

d

dr

(
(r − r+)(r − rs)

dR(r)

dr

)
+

[(
(r2

+ + (a + l)2)ω − am
)2

(r − r+)(r+ − rs)k2
+

−
(
(r2

s + (a + l)2)ω − am
)2

(r − rs)(r+ − rs)k2
+

+
(
r2 + (r+ + rs)r + r2

+ + r2
s + r+rs + 2(a + l)2

) ω2

k2
+

−
2amω

k2
+

+
1

3k+
+O(r − r+)

]
R(r)

=
K
k+

R(r) .

The potential term can be further simplified by imposing the near
region and low frequency condition r � 1/ω

d

dr

(
∆

dR(r)

dr

)
+

[(
(r2

+ + (a + l)2)ω − am
)2

(r − r+)(r+ − rs)k2
+

−
(
(r2

s + (a + l)2)ω − am
)2

(r − rs)(r+ − rs)k2
+

]
R(r)

= K′R(r) .
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Non-extremal Kerr-like spacetimes/WCFT

The reduced radial equation can be mapped to the Casimir equation
of SL(2,R) satisfied by Ψ = e−iωt+imφR(r)(

−H2
0 +

1

2
(H+H− + H−H+)

)
Ψ = K′Ψ ,

The conformal generators are defined in terms of conformal
coordinates

H+ = i
∂

∂ω+
, H̄+ = i

∂

∂ω−
,

H0 = i

(
ω+ ∂

∂ω+
+

y

2

∂

∂y

)
, H̄0 = i

(
ω−

∂

∂ω−
+

y

2

∂

∂y

)
,

H− = i

(
(ω+)2 ∂

∂ω+
+ ω+y

∂

∂y
− y2 ∂

∂ω−

)
, H̄− = i

(
(ω−)2 ∂

∂ω−
+ ω−y

∂

∂y
− y2 ∂

∂ω+

)
.
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Non-extremal Kerr-like spacetimes/WCFT

The conformal coordinates are defined as

ω+ =

√
r − r+

r − rs
e2πTRφ+2nR t , TR =

k+(r+ − rs)

4πa
, nR = 0 ,

ω− =

√
r − r+

r − rs
e2πTLφ+2nLt , TL =

k+(r2
+ + r2

s + 2(a + l)2)

4πa(r+ + rs)
, nL = −

k+

2(r+ + rs)
,

y =

√
r+ − rs

r − rs
eπ(TR+TL)φ+(nR+nL)t ,

The allowed generators for warped conformal symmetry

H+ = i
∂

∂ω+
,

H0 = i

(
ω+ ∂

∂ω+
+

y

2

∂

∂y

)
, H̄0 = i

(
ω−

∂

∂ω−
+

y

2

∂

∂y
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H− = i

(
(ω+)2 ∂

∂ω+
+ ω+y

∂
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Non-extremal Kerr-like spacetimes/WCFT

The local symmetries are represented by the vector fields which
preserve the Casimir operator and H̄0

ξ(l(ω+)) = l(ω+)
∂

∂ω+
+
∂l(ω+)

∂ω+

y

2

∂

∂y
,

ζ(p(ω+)) = p(ω+)

(
ω−

∂

∂ω−
+

y

2

∂

∂y

)
,

Their Fourier modes satisfy the classical Virasoro and U(1)
Kac-Moody algebra

i [lm, ln] = (m − n)lm+n, ln = ξ

(
l(ω+) = 2πTR(ω+)

1+ in
2πTR

)
,

i [lm, pn] = −npm+n, pn = ζ

(
p(ω+) = (ω+)

in
2πTR

)
,

i [pm, pn] = 0 .
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Non-extremal Kerr-like spacetimes/WCFT

In contrast to the extremal case, we need an additional counterterm
in defining the covariant charge variation to carry out the local
symmetry algebra with central extensions in the non-extremal case [X.

Jiang and JX, 2024]

δQ = δQIW + δQct .

with

δQct(ξ, h; g) =
1

16π

∫
∂Σ

iξ · ( ∗X ), X = 2hνµ∇ρNρ
νdx

µ ,
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Non-extremal Kerr-like spacetimes/WCFT

Define the charge variations with respect to the mode vectors

δLn = δQ(ln, h; g), δPn = δQ(pn, h; g) ,

the Dirac brackets among these charges form the standard warped
conformal algebra

{Ln, Lm} = (m − n)Lm+n + i
c

12
m3δm,−n ,

{Ln,Pm} = mPm+n ,

{Pn,Pm} = i
κ

2
mδm,−n ,

with

c =
6λ2(r+ + rs)a

k+ (λ− r+α(a + l)) (λ+ r+α(a− l))
,

κ = −
λ2(r+ + rs)a

k+ (λ− r+α(a + l)) (λ+ r+α(a− l))
.
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Non-extremal Kerr-like spacetimes/WCFT

Comparing the central charges

c =
6λ2(r+ + rs)a

k+ (λ− r+α(a + l)) (λ+ r+α(a− l))
,

κ = −
λ2(r+ + rs)a

k+ (λ− r+α(a + l)) (λ+ r+α(a− l))
,

to the extremal case

c∗ext =
12λ2r+a

k+(λ− r+α(a + l))(λ+ r+α(a− l))
,

κ∗ext =
λ2r+aτ2

2π2k+(λ− r+α(a + l))(λ+ r+α(a− l))
,

one find the time periodicity τ = 2πi , which is also a requirement
from the horizon smoothness condition in the Euclidean signature.
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Horizon entropy from WCFT modularity

The global warped conformal symmetry is spontaneously broken to
U(1)× U(1) due to the 2π identification along φ, these are the
translational symmetries in the dual WCFT with coordinates

t+ = 2πTRφ+ 2nRt, t− = −2πTLφ− 2nLt .

The WCFT is defined on a torus

(t, φ) ∼ (t, φ+ 2π) ∼ (t + iβ, φ+ iβΩH) ,

(t+, t−) ∼ (t+ + 4π2TR , t
− − 4π2TL) ∼ (t+ + 2πi , t− + 2πi) ,

on which the partition functions have modular properties.
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Horizon entropy from WCFT modularity

Generically, the WCFT torus partition function can be written as

Z¯̀|`(τ̄ |τ) = Tr¯̀|`

(
e2πi τ̄P0e−2πiτL0

)
,

which is related to the canonical partition function through

Z¯̀|`(τ̄ |τ) = e
πiκ¯̀

(
τ̄− ¯̀τ

2`

)
Z0|1

(
τ̄ −

¯̀τ

`
|τ
`

)
, WCT

= eπiκ
`τ̄2

2τ Z0|1

(
`τ̄

τ
− ¯̀| − `

τ

)
, ST

In the τ → −i0 limit, the thermal entropy can be calculated by the
vacuum charges

S = (1− τ∂τ − τ̄ ∂τ ) logZ

= 4π2i(TR + TL)P̂vac
0 + 8π2TR L̂

vac
0 .
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Horizon entropy from WCFT modularity

The vacuum charges are related by the WCFT spectral flow [Detournay,

Hartman, and Hofman, 2012]

L̂vac0 = − c

24
+

(P̂vac
0 )2

κ
,

L̂0 is proportional to the angular momentum thus has vanishing
vacuum value

L̂vac0 = 0, (P̂vac
0 )2 = −

(
λ2(r+ + rs)a

2k+ (λ− r+α(a + l)) (λ+ r+α(a− l))

)2

.

The WCFT entropy match the horizon entropy by the area law [X.

Jiang and JX, 2024]

S = 4π2|P̂vac
0 |(TR + TL) =

πλ2(r2
+ + (a + l)2)

(λ− r+α(a + l))(λ+ r+α(a− l))
= SBH .
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Bulk absorption probability from WCFT

Consider the scattering process of a scalar filed Φ originating in the
asymptotically flat region of a Kerr black hole. The Klein-Gordon
particle number flux

F =

∫ √
−gJ rdθdφ , with Jµ =

i

8π
(Φ∗∇µΦ− Φ∇µΦ∗) .

The absorption cross section of the scalar scattering process

σbulkabs =
Fin −Fout

Fin
.
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Bulk absorption probability from WCFT

On the Kerr background, the scalar wave equation is separable[
1

sin θ
∂θ(sin θ∂θ)− m2

sin2 θ
+ ω2a2 cos2 θ

]
S(θ) = −K` ,

[
d

dr
∆

d

dr
+

(2Mr+ω − am)2

(r − r+)(r+ − r−)
− (2Mr−ω − am)2

(r − r−)(r+ − r−)

+ (r2 + 2M(r + 2M))ω2

]
R(r) = K`R(r) .

Consider the low frequency limit when ω � 1/M and in this case
K` = `(`− 1), ` = −m + 1, · · · ,m + 1. In the far region r � M, the
radial wave equation is the spherical Bessel’s equation

d

dr

(
r2 dR(r)

dr

)
+ r2ω2R(r) = `(`− 1)R(r) .
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Bulk absorption probability from WCFT

There are two linearly independent solutions of the far region radial
equation [Nian and Tian, 2023]

Rfar (r) = Afar
1√
ωr

J−`+ 1
2
(ωr) + Bfar

1√
ωr

J`− 1
2
(ωr) ,

Separate the pure outgoing and pure ingoing parts

Rfar (r) = Zout

(
ie iπ`

1√
ωr

J−`+ 1
2
(ωr) +

1√
ωr

J`− 1
2
(ωr)

)
+ Zin

(
−ie−iπ` 1√

ωr
J−`+ 1

2
(ωr) +

1√
ωr

J`− 1
2
(ωr)

)
,

where

Zout =
1

2 cos(π`)
(−iAfar + e−iπ`Bfar ) ,

Zin =
1

2 cos(π`)
(iAfar + e iπ`Bfar ) .

Jianfei Xu (SEU) August 29, 2024 31 / 41



Bulk absorption probability from WCFT

There are two linearly independent solutions of the far region radial
equation [Nian and Tian, 2023]

Rfar (r) = Afar
1√
ωr

J−`+ 1
2
(ωr) + Bfar

1√
ωr

J`− 1
2
(ωr) ,

Separate the pure outgoing and pure ingoing parts

Rfar (r) = Zout

(
ie iπ`

1√
ωr

J−`+ 1
2
(ωr) +

1√
ωr

J`− 1
2
(ωr)

)
+ Zin

(
−ie−iπ` 1√

ωr
J−`+ 1

2
(ωr) +

1√
ωr

J`− 1
2
(ωr)

)
,

where

Zout =
1

2 cos(π`)
(−iAfar + e−iπ`Bfar ) ,

Zin =
1

2 cos(π`)
(iAfar + e iπ`Bfar ) .

Jianfei Xu (SEU) August 29, 2024 31 / 41



Bulk absorption probability from WCFT

The outgoing and ingoing scalar modes at the outer boundary of the
far region

Φout(r →∞) =
∑
`,m

e−iωt+imφS`(θ)Zout

(√
2

π

e iωr+iπ`/2

ωr
cos(π`)

)
,

Φin(r →∞) =
∑
`,m

e−iωt+imφS`(θ)Zin

(√
2

π

e−iωr−iπ`/2

ωr
cos(π`)

)
.

The outgoing and ingoing Klein-Gordon particle fluxes

Fout ∝ |Zout |2 , Fin ∝ |Zin|2 ,
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Bulk absorption probability from WCFT

So the absorption cross section is fixed by the coefficients

σbulkabs =
Fin −Fout

Fin
= 1− |Zout |2

|Zin|2

=
2i cos(π`)(AfarB

∗
far − BfarA

∗
far )

|iAfar + e iπ`Bfar |2
.

What is the relation between these coefficients and the black hole
parameters?
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Bulk absorption probability from WCFT

The coefficients can be determined by the near-far matching.

In the near region r � 1/ω, the radial wave equation becomes a
hypergeometric equation[

d

dr
∆

d

dr
+

(2Mr+ω − am)2

(r − r+)(r+ − r−)
− (2Mr−ω − am)2

(r − r−)(r+ − r−)

]
R(r) = `(`− 1)R(r) ,

with solution (imposing ingoing B.C. at horizon)

Rnear (r) =

(
r − r+
r − r−

)−i
2Mr+ω−am

r+−r−
(r − r−)−`

×2 F1

(
`− i

4M2ω − 2am

r+ − r−
, `− i2Mω; 1− i

4Mr+ω − 2am

r+ − r−
;
r − r+
r − r−

)
.
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Bulk absorption probability from WCFT

The near region radial wave solution has the following large r
behaviour

Rnear (r � M) ∼ Anear r
−` + Bnear (r+ − r−)−2`+1r `−1 ,

where

Anear =
Γ
(

1− i 4Mr+ω−2am
r+−r−

)
Γ(−2`+ 1)

Γ(1− `− i2Mω)Γ
(

1− `− i 4M2ω−2am
r+−r−

) ,
Bnear =

Γ
(

1− i 4Mr+ω−2am
r+−r−

)
Γ(2`− 1)

Γ(`− i2Mω)Γ
(
`− i 4M2ω−2am

r+−r−

) .
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Bulk absorption probability from WCFT

The near-far matching:

Compering the r dependencies of the near and far region solutions in
the matching region. They are the two limiting cases of a single full
solution which are required to be equal in the matching region

Rnear (r � M) ∼ Rfar (r → 0) .
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Bulk absorption probability from WCFT

Thus the near and far asymptotic expansion coefficients are related

Afar = 2−`+
1
2 Γ

(
−`+

3

2

)
ω`Anear ,

Bfar = 2`−
1
2 Γ

(
`+

1

2

)
(r+ − r−)−2`+1ω−`+1Bnear .

With the above relations and ω � 1/M, the absorption cross section
finally can be written as (superradiant scattering 0 < ω < m a

2Mr+
)

σbulkabs =
2i cos(π`)(AfarB

∗
far − BfarA

∗
far )

|Bfar |2

=
(ω/2)2`−1(r+ − r−)2`−1

Γ
(
`+ 1

2

)2
Γ(2`− 1)2

sinh

(
π

4Mr+ω − 2am

r+ − r−

)

× |Γ(`− i2Mω)|2
∣∣∣∣Γ(`− i

4M2ω − 2am

r+ − r−

)∣∣∣∣2 .
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Bulk absorption probability from WCFT

The finite temperature warped CFT coordinates in the Kerr case

X = 2πTRφ, Y =
1

2M
t − 2π(TL + q̄TR)φ, TR,L =

r+ ∓ r−
4πa

.

In a field theory, the Fermis Golden rule gives the transition rate out
of the thermal states

R = 2π
∑
`m

|J`m|2
∫

dXdYe iΩX−iQYG (X ,Y ) ,

where

Ω =
4M2ω − 2am

r+ − r−
+ 2Mωq̄, Q = −2Mω ,

and G (X ,Y ) is the two point correlation function. For the warped
CFT [W. Song and JX, 2018]

G (X ,Y ) ∼ CO(−1)δe iQ(Y+q̄X )

(
β

π
sinh

πX

β

)−2δ

.
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Bulk absorption probability from WCFT

The absorption cross section for the thermal states in the warped CFT

σabs ∼
∫

dXdYe iΩX−iQY [G (X − iε,Y − iε)− G (X + iε,Y + iε)] ,

∓iε correspond to absorption and emission [S. Gubser, 1997].

The form of the absorption cross section in warped CFT

σabs ∼
eπQ

Γ(2δ)
sinh(π(Ω + Qq̄ − Q))|Γ(δ − i(Ω + Qq̄))|2 ,

matches the bulk absorption cross section in the Ω dependence [JX,

2023]

σbulkabs ∼ sinh

(
π

4Mr+ω − 2am

r+ − r−

) ∣∣∣∣Γ(`− i
4M2ω − 2am

r+ − r−

)∣∣∣∣2 ,
given δ = `.
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Summary

The Kerr-like spacetimes with extremal horizons have infinite scaling
regions near their horizons where consistent boundary conditions can
be imposed to manifest the asymptotic symmetry group as warped
conformal symmetries.

In the non-extremal case, these spacetimes have hidden conformal
symmetry from which the local warped conformal symmetries can be
recovered from the vector fields that keep the Casimir operator and
scalar frequency invariant. The covariant charges with additional
counterterms form the symmetry algebra with well defined central
charges.

The black hole entropy as well as the absorption probability in a bulk
scattering process can be shown to be reproduced from warped CFT
calculations.

Future directions include relating the Heun-type equations to the
Virasoro and Kac-Moody blocks’ equations, evaluating black hole
QNM using warped CFT methods, higher dimensional black holes,· · ·
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Thank You
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