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1.1 Inflation
Inflation is a paradigm to solve several Big Bang Puzzles,
such as the Cauchy, horizon, monopole and flatness
problems.
All observations carried so far are consistent with Inflation.

(Planck 2015, arXiv:1502.02114)
(Simmilar results were obtained in Planck 2018, arXiv:1807.06209)



1.2 Challenging (Theoretical) Problems

Inflation also faces various (theoretical) problems:
Initial singularity problem: General relativity (GR) inevitably
leads inflation to an initial singularity 1.
Trans-Plancian problem: The current
observational size of the universe was
smaller than the Planck one at the
onset of the inflation for models with
e-folds N ≳ 72.
...
Any physical understanding of them requires quantum
gravity 2.

1A. Borde and A. Vilenkin, PRL72 (1994) 3305.

2D. Baumann, L. McAllister, Inflation and String Theory

(Cambridge, 2015).



1.3 Loop Quantum Cosmology
Loop quantum cosmology (LQC) is one of few theories that
offer resolutions of these problems.
In particular, the big bang singularity is replaced by a
quantum bounce 3.
By now, a large number of cosmological models have been
studied in detail in LQC 4, including

the closed FLRW model
FLRW models with Λ with any signs
the Bianchi models
the Gowdy model
f(R) universe
...

In all cases, the singularity is resolved!
3A. Ashtekar, P. Singh, CQG28 (2011) 213001.

4I. Agullo, P. Singh, arXiv:1612.01236;

P. Singh, arXiv:1809.01747.



1.3 Loop Quantum Cosmology (Cont.)
It was also found that: the probability for the desired — i.e.
in agreement with CMB measurements — slow roll inflation
not to occur in an LQC solution is less than about one part
in a million 5,

≲ 1.2× 10−6

— Slow-roll inflation is an attractor in LQC!

5P. Singh, K. Vandersloot and G. V. Vereshchagin,

PRD74 (2006) 043510;

X. Zhang and Y. Ling, JCAP08 (2007) 012;

A. Ashtekar A and D. Sloan, GRG43 (2011) 3619;

A. Corichi and A. Karami PRD83 (2011) 104006;

L. Linsefors and A. Barrau, PRD87 (2013) 123509;

L. Chen and J.-Y. Zhu, PRD92 (2015) 084063.



1.3 Loop Quantum Cosmology (Cont.)
However, ambiguities rise, as depending on the ways how
to carry out the quantizations, different effective field
equations can be resulted 6.

6A. Ashtekar, T. Pawlowski, P. Singh, PRL96 (2006) 141301;

J. Yang, Y. Ding, Y. Ma, PLB682 (2009) 1;

A. Dapor and K. Liegener, PLB785 (2018) 506;

E. Alesci et al., arXiv:1808.10225;

J. Bilski, A. Marciano, arXiv:1905.00001.
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2.1 A Brief Introduction to LQC
LQC is symmetry reduced quantization of cosmology by
mimicking the constructions used in LQG 7.
In the spatially flat FLRW universe,

ds2 = −dt2 + a2(t)d⃗x2,

the relevant constraint is the gravitational Hamiltonian
constraint, which is a sum of the Euclidean and Lorentz
terms, Hgrav = H(E)

grav − (1 + γ2)H(L)
grav

H(E)
grav =

1

16πG

∫
d3x ϵijkF

i
ab

EajEbk

|det(q)|

H(L)
grav =

1

8πG

∫
d3x Kj[aK

k
b]

EajEbk

|det(q)|

Fab: the field strength of connection Aia
Kia: the extrinsic curvature; qab: the spatial metric
γ: the Barbero-Immirzi parameter

7A. Ashtekar, T. Pawlowski, P. Singh, PRD74 (2006) 084003.



2.1 A Brief Introduction to LQC (Cont.)
For spatially flat FLRW universe, we have

H(E)
grav = 2γ2H(L)

grav

Upon quantization, ambiguities can arise resulting from
different treatments of these two terms.
In LQC, using the above relation, instead of quantizing the
Euclidean and Lorentz terms separately, only the Euclidean
term H(E)

grav is quantized, and the resulted effective
Hamiltonian (for sharply peaked states) is given by 8,

HLQC = −3v sin2 (λb)

8πGγ2λ2
+HM,

(
v ∝ a3; b ∝ H

)
(1)

λ2 ≡ 4
√
3πγℓ2PL

8A. Ashtekar, T. Pawlowski, P. Singh, PRD74 (2006) 084003.



2.1 A Brief Introduction to LQC (Cont.)
Then, we obtain the following Hamilton equations

v̇ =
{
v,HLQC

}
=

3v

2λγ
sin(2λb)

ḃ =
{
b,HLQC

}
= −3 sin2 (λb)

2γλ2
− 4πGγP

P ≡ −∂HM

∂v
, ρ ≡ HM

v
= ρc sin

2 (λb)

ρc ≡
√
3ρPl

32Gπ2γ3ℓ2Pl
≈ 0.41ρPl

The corresponding Friedmann-Raychaudhuri (FR)
equations for a scalar field read,



2.1 A Brief Introduction to LQC (Cont.)

H2 =
8πG

3
ρ

(
1− ρ

ρc

)
, (2)

ϕ̈+ 3Hϕ̇+ V,ϕ(ϕ) = 0 (3)

ρ ≡ HM
v

=

(
1

2
ϕ̇2 + V(ϕ)

)
, P =

1

2
ϕ̇2 − V(ϕ)

The big bang singularity is
replaced by a quantum
bounce at ρ = ρc

9.

(v ∝ a3)
9A. Ashtekar, P. Singh, CQG28 (2011) 213001.



2.2 Universality of the Background
In the framework of LQC, the background evolution can be
divided into two classes:

1

2
ϕ̇2(tB)− V(ϕ(tB)) =

{
> 0, KE Dominated
< 0, PE Dominated

A potential dominated bounce
is either not able to produce the
desired slow-roll inflation or leads
to a large amount of e-folds of
expansion 10. In the latter, all the
physics was washed out, and no
new physics will be present.

10A. Ashtekar and A. Barrau, CQG32 (2015) 234001.



2.2 Universality of the Background (Cont.)
In the kinetic energy initially (well) dominated case,

1

2
ϕ̇2(tB) ≫ V(ϕ(tB))

the evolution can always be divided into three phases 11:

w(ϕ) ≡ Pϕ
ρϕ

=


+1, bouncing
∈ (−1, 1), transition
−1, inflation Power-law n=2,ϕB=1.2

Power-law n=1/3, ϕB=25

Starobinsky,ϕB=5

0.1 100 105

-1.0

-0.5

0.0

0.5

1.0

t/tPl

w
ϕ

11Zhu, AW, G. Cleaver, K. Kirsten, Q. Sheng, PLB773 (2017) 196;

PRD96 (2017) 083520; Shahalam, Sharma, Wu, AW, PRD96 (2017) 123533;

M. Shahalam, M. Sami, AW, PRD98 (2018) 043524; M. Sharma, M.

Shahalam, W. Qiang, AW, JCAP11 (2018) 003; M. Sharma, T. Zhu, AW,

arXiv:1903.07382; B.-F. Li, P. Singh, AW, arXiv:1906.01001.



2.2 Universality of the Background (Cont.)

The transition phase is short, during which the kinetic
energy decreases dramatically:

1

2
ϕ̇2 ≃ ρB → 10−12ρB ≤ V(ϕ)

Power-law n=2,ϕB=1.2

Power-law n=1/3, ϕB=25

Starobinsky,ϕB=5

0.1 100 105
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0.0
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t/tPl

w
ϕ



2.2 Universality of the Background (Cont.)

The three-phase division is universal:
• Quadratic Potential V(ϕ) = λ0ϕ

2:

ϕ�=�����

ϕ�=��� ���

ϕ�=-� ���

�� ��� ����
��� ��� ��� ���

-���

-���

���

���

���

�/���

�
(ϕ
)

ϕ�=�����

ϕ�=��� ���

ϕ�=-� ���

��� ��� ��� ���

���

���

���

���

���

�/���

ϵ
�

ϵH ≡ − Ḣ

H2
=

{
≃ 0, inflation
≳ 1, non-inflation

(
H ≡ ȧ

a

)



2.2 Universality of the Background (Cont.)

• Power-law Potential V(ϕ) = λ0ϕ
7/4:
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2.2 Universality of the Background (Cont.)

• Power-law Potential V(ϕ) = λ0ϕ
4/3:
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2.2 Universality of the Background (Cont.)

• Power-law Potential V(ϕ) = λ0ϕ:
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2.2 Universality of the Background (Cont.)

• Power-law Potential V(ϕ) = λ0ϕ
2/3:
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2.2 Universality of the Background (Cont.)

• Power-law Potential V(ϕ) = λ0ϕ
1/3:
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2.2 Universality of the Background (Cont.)

• Starobinsky Potential

V(ϕ) = 3
32πM

2m2Pl ×
(
1− e

−
√

16π
3

ϕ
mPl

)2

ϕ�=-��� ���

ϕ�= ��� ���

ϕ�= �� ���

�×��� �×��� �×��� �×���
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ϵ �
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���

���

���
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�
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2.2 Universality of the Background (Cont.)

• Monodromy Potential V(ϕ) = V0

∣∣∣ ϕ
mpl

∣∣∣p :



2.2 Universality of the Background (Cont.)

• Higgs Potential V(ϕ) = V0
(
ϕ2 − ϕ2

0

)2
:



2.2 Universality of the Background (Cont.)
• During the bouncing phase, the evolution of a(t) can be well
approximated analytically by

a(t) ≃ aB

(
1 + γB

t2

t2Pl

)1/6

, γB ≡ 24πρc/m
4
Pl

Power-law n=2, ϕB=1.2

Power-law n=1/3, ϕB=25

Starobinsky ϕB=5

Anaytical

tB 1 100 104 106
0.1
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100

1000

104

105

t/tPl

a
(t
)



2.2 Universality of the Background (Cont.)

• Evolution of a(t) for different potentials:

ϕ�=�����

ϕ�=��� ���

ϕ�=-� ���

����������

�� � ���
��� ���

���

�

��

���

����

���

���

�/���

�
(�
)/
�
�

ϕ�=��� ���

ϕ�=� ���

ϕ�= �� ���

����������

�� ��� ��� ��� ���

�

���

���

���

�/���

�(
�)
/�
�

(V = V0ϕ
2) (V = V0ϕ

1/2)



2.2 Universality of the Background (Cont.)

• Evolution of a(t) for the Starobinsky Potential:
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2.2 Universality of the Background (Cont.)

The main reason is that

1

2
ϕ̇2
B ≫ V(ϕB) ⇒ 1

2
ϕ̇2 ≫ V(ϕ),

holds in the whole bouncing phase, once it holds at the
bounce t = tB.

��������� ������ �(ϕ)

������� ������ ϕ
 �
/�

������ ������� ρ(�)

�� ��� ���

��-��

��-��

��-�

��

�/���



2.2 Universality of the Background (Cont.)

The evolution during the transition phase is given by,

ϕ(t) = ϕc + tcϕ̇c ln
t

tc
, a(t) = ac

(
1 + tcHc ln

t

tc

)
, (4)

Hc, ac, ϕc: integration constants
During the slow-roll inflation, we have

a(t) = aie
Hinf.t, ϕ ≃ ϕ0 (5)

Power-law n=2,ϕB=1.2

Power-law n=1/3, ϕB=25

Starobinsky,ϕB=5

0.1 100 105

-1.0

-0.5

0.0
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1.0

t/tPl

w
ϕ



2.3 Universality of Linear Perturbations
The scalar and tensor perturbations are given by 12,

µ′′
k +

(
k2 − a′′

a
+ U(η)

)
µk = 0 (6)

where a′ ≡ da/dη, dη = dt/a(t), and

U(η) =

{
a2
(
f2V(ϕ) + 2fV,ϕ(ϕ) + V,ϕϕ(ϕ)

)
, scalar

0, tensor

f ≡
√
24πGϕ̇/

√
ρ.

12A. Ashtekar and A. Barrau, CQG32 (2015) 234001.



2.3 Universality of Linear Perturbations (Cont.)

Both of the scalar and tensor perturbations are universal
and independent of the slow-roll inflationary models during
the bouncing phase
This is because the potential U(η) is very small in
comparing with a′′/a, so we have

Ω2
k = k2 − a′′

a
+ U(η) ≃ k2 − a′′

a

during the whole bouncing phase.
Since a(t) is universal during
this phase, clearly the mode
functions µ

(s,t)
k ,

µ
(s,t)
k

′′
− a′′

a
µ
(s,t)
k = 0

are also universal.

���������

�����-��� ���� �=�/�

�����������

|���/�|

|�(η)|

-�� -� � � ��

��-�

��-�

��-�

�

�/���

|�
(�
)
�
�
|�
��/
�
|



2.3 Universality of Linear Perturbations (Cont.)

More interestingly, the term a′′/a can be replaced by a
Pöschl-Teller (PT) potential,

VPT(η) =
V0

cosh2 α(η − ηB)
, V0 = k2B =

α2

6
, V(η) ≡ a′′

a

VPT (η)

V(η)

-2 -1 0 1 2

0

2

4

6

8

10

η-ηB



2.3 Universality of Linear Perturbations (Cont.)

Then, the mode function has the analytical solution,

µ
(PT)
k (η) = akx

ik/(2α)(1− x)−ik/(2α)

× 2F1(a1 − a3 + 1, a2 − a3 + 1, 2− a3, x)

+bk[x(1− x)]−ik/(2α)
2F1(a1, a2, a3, x).

ak, bk: integration constants, to be determined by initial
conditions. 2F1(a, b, c, x): the hypergeometric function

a1 ≡ 1

2

(
1 +

1√
3

)
− ik√

6 kB
,

a2 ≡ 1

2

(
1− 1√

3

)
− ik√

6 kB
,

a3 ≡ 1− ik√
6 kB

.

Solution with PT potential

Numerical solution

-1 0 1 2

0.26

0.27

0.28

0.29

0.30

0.31

0.32

0.33
-1.51 0 1.51 3.95

Conformal time η-ηB

|μ
k
(η
)|

Cosmic time t



2.3 Universality of Linear Perturbations (Cont.)

In the transition phase, the mode functions are given by,

µk(η) =
1√
2k

(
α̃ke

−ikη + β̃ke
ikη
)

α̃k, β̃k: integration constants
In the slow-roll inflation phase, the mode functions are
given by the standard forms,

µ
(s,t)
k (η) ≃

√
−πη

2

[
αkH

(1)
νs,t

(−kη) + βkH
(2)
νs,t

(−kη)
]
,

αk, βk: integration constants.
Three sets of integration constants:

1) Bouncing: (ak, bk)

2) Transition:
(
α̃k, β̃k

)
3) Slow-roll Inflation: (αk, βk)



2.3 Universality of Linear Perturbations (Cont.)

Matching them together, we find that the Bogoliubov
coefficients, αk, βk, are given by

αk =
√
2k

[
ak

Γ(2− a3)Γ(a1 + a2 − a3)

Γ(a1 − a3 + 1)Γ(a2 − a3 + 1)

+ bk
Γ(a3)Γ(a1 + a2 − a3)

Γ(a1)Γ(a2)

]
eikηB ,

βk =
√
2k

[
ak

Γ(2− a3)Γ(a3 − a1 − a2)

Γ(1− a1)Γ(1− a2)

+ bk
Γ(a3)Γ(a3 − a1 − a2)

Γ(a3 − a1)Γ(a3 − a2)

]
e−ikηB .

Since ai = ai(k), so αk, βk are in general k-dependent.



2.3 Universality of Linear Perturbations (Cont.)

In general |βk|2 ̸= 0, so particles are generically created at
the onset of inflation.
In GR, we normally impose the BD vacuum at the onset of
the inflation,

αGR
k = 1, βGR

k = 0

Power-law n=2,ϕB=1.2

Power-law n=1/3, ϕB=25

Starobinsky,ϕB=5

0.1 100 105
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2.3 Universality of Linear Perturbations (Cont.)

Then, the scalar and tensor power spectra are given by,

PR(k) = |αk + βk|2PGR
R (k),

Ph(k) = |αk + βk|2PGR
h (k),

with

PGR
R (k) ≡ k2

4π3

(
H

aϕ̇

)2

Γ2(νs)

(
−kη

2

)1−2νs

,

PGR
h (k) ≡ k2

π3M2Pl

1

a2
Γ2(νt)

(
−kη

2

)1−2νt



2.3 Universality of Linear Perturbations (Cont.)

Note that, as mentioned above, αk, βk are usually
k-dependent, so the quantities PR(k) and Ph(k) now also
become k-dependent.

This provides an excellent opportunity to test LQC.

In addition, sine µS
k = µT

k during the bouncing phase, so if
we choose(

aSk, b
S
k

)
=

(
aTk, b

T
k

)
⇒

(
αS
k, β

S
k

)
=
(
αT
k, β

T
k

)
⇒ rLQC ≡

Ph(k)

PR(k)
=

PGR
h (k)

PGR
R (k)

= rGR



2.3 Universality of Linear Perturbations (Cont.)

Clearly, such dependence cannot be strong. Otherwise, it
will not be consistent with current observations, which
show that the power spectra are almost scale-invariant 13.

To fix (αk, βk) or (ak, bk), one needs to impose the initial
conditions, which is still a challenging question in LQC.

In the framework of LQC, various sets of initial conditions
have been investigated. However, this is a subtle issue,
because in general there is not a preferred initial state for a
quantum field in arbitrarily curved space-times 14.

13P. Collaboration et al., Planck 2015. XX. Constraints on

inflation, arXiv:1502.02114.

14A. Ashtekar, B. Gupt, CQG34 (2017) 035004.



2.3 Universality of Linear Perturbations (Cont.)

If all the modes are inside the Hubble horizons, as in the
inflationary case, the initial state can be chosen as the
Bunch-Davies vacuum:

αGR
k = 1, βGR

k = 0



2.3 Universality of Linear Perturbations (Cont.)

However, in the pre-inflationary phases, especially near
the bounce, the wavelengths can be larger, equal, or
smaller than the corresponding characteristic scale. Thus,
it is in general impossible to assume that the universe is in
the Bunch-Davies vacuum at the bounce.



2.3 Universality of Linear Perturbations (Cont.)

Recently, we considered two different kinds of initial
conditions 15

The fourth-order adiabatic vacuum at the bounce 16

The BD vacuum in contracting phase 17

15Zhu AW, K. Kirsten, G. Cleaver, Q. Sheng„ PRD96, 083520 (2017).

16I.Agullo, A. Ashtekar, W. Nelson, PRD87 (2013) 043507.

17A. Barrau, B. Bolliet, Int. J. Mod. Phys. D25, 1642008 (2016).



2.3 Universality of Linear Perturbations (Cont.)

Surprisingly, both of them lead to the same results:

a
(S,T)
k = 0, b

(S,T)
k =

eikηB√
2k

⇒ rLQC = rGR.

Then, we found that the power spectra for both scalar and
tensor perturbations are consistent with the numerical
ones 18.

18I. Agullo, N. Morris, PRD92 (2015) 124040.



2.3 Universality of Linear Perturbations (Cont.)

Fitting with the Planck 2018 data, we find that the total
e-folds from the bounce until now must be,

Ntot. ≳ 142,

in order to wash out the k-dependent of the power spectra
during the pre-inflationary phase.

(Scalar spectrum) (Scalar + tensor spectra)



2.3 Universality of Linear Perturbations (Cont.)

Recently, the non-Gaussianity was studied 19, and shown
that strong correlation between observable scales and
modes with longer (super-horizon) wavelength arise, which
can induce a dipole-dominated modulation on large
angular scales in the CMB, in agreement with
observations.
Lately, we also studied the non-Gaussianity using our
analytical solutions of the mode functions, and confirmed
the above results 20.

19I. Agullo, PRD92 (2015) 064038;

I. Agullo, B. Bolliet, V. Sreenath, PRD97, 066021 (2018).

20T. Zhu, AW, K. Kirsten, G. Cleaver, Q. Sheng, PRD97 (2018)

043501.



2.3 Universality of Linear Perturbations (Cont.)

In particular, the non-Gaussianity in the squeezed limit can
be enhanced at superhorizon scales, which can yield a
large statistical anisotropy on the power spectrum.
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3.1 mLQC - I

In the process of the quantization of LQC, using the
relation,

H(E)
grav = 2γ2H(L)

grav

only the Euclidean term H(E)
grav was quantized. However, in

LQG the Lorentz term H(L)
grav is normally quantized using a

different procedure.

In particular, following the process of regularizations
proposed in 21, Yongge and his collaborators found the
effective Hamiltonian takes the form 22,

HmLQC−I =
3v

8πGλ2

{
sin2(λb)− (γ2 + 1) sin2(2λb)

4γ2

}
+HM (7)

21T. Thiemann, CQG24(1998) 839; 875.

22J. Yang, Y. Ding, Y. Ma, PLB682 (2009) 1.



3.1 mLQC - I (Cont.)

In 23, we referred this model was as mLQC-I (modified
LQC-I model).
The same effective Hamiltonian was obtained recently by
Andrea & Klaus 24, by the complexifier coherent states with
the µ0-scheme.
Note that Yongge et al actually used the so-called
µ̄-scheme.
In addition, treating the Lorentz and Euclidean terms
separately was first considered by Bojowald in 2002 25,
and also derived the mLQC-I model by a µ0-like scheme.

23B.-F. Li, P. Singh, AW, PRD98 (2018) 066016

24A. Dapor and K. Liegener, PLB785 (2018) 506

25M. Bojowald, CQG19 (2002) 2717.



3.1 mLQC - I (Cont.)

Then, Hamilton’s equations read,

v̇ =
{
v,HmLQC−I

}
=

3v sin(2λb)

2γλ

{
(γ2 + 1) cos(2λb)− γ2

}
,

ḃ =
{
b,HmLQC−I

}
=

3 sin2(λb)

2γλ2

{
γ2 sin2(λb)− cos2(λb)

}
− 4πGγP

with the constraint HmLQC−I = 0, or

ρ− 3

8πGλ2

{
(γ2 + 1) sin2(2λb)

4γ2
− sin2(λb)

}
= 0.



3.1 mLQC - I (Cont.)

To write them in the form of the FR equations, we first note
that the Hubble parameter H ≡ ȧ/a = v̇/3v and ρ are given
by,

H2 =
sin2(2λb)

4λ2γ2

{
γ2 − (γ2 + 1) cos(2λb)

}2

,

ρ =
3

8πGλ2

(
− sin2(λb) +

(γ2 + 1) sin2(2λb)

4γ2

)
or inversely,

sin2(λb±) =
1±

√
1− ρ/ρIc

2(γ2 + 1)
, ρIc ≡

ρc
4(1 + γ2)

— Two branches!



3.1 mLQC - I (Cont.)
For a scalar field, we have

ḃ = −4πGγϕ̇2 ≤ 0

Since ϕ is continuous across the
bounce, so is b.

Thus, if the universe before the
bounce is described by the b+
branch, it must be described by
the b− branch after the bounce,
or vice versa.
— asymmetric bounce!

This is in contrast to LQC, in
which the evolution is symmetric
with respect to the bounce.

ρ = ρcρ = ρ0

b+

b-
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3.1 mLQC - I (Cont.)

In the figures, we compare
results from three different
models:

the black solid straight line is
the result from GR

the blue dot-dashed curve is
from LQC

the red dotted line is from the
modified LQC, in which the big
bang singularity is also replaced
by a quantum bounce.
This was further confirmed later by numerical simulations 26.

-4 -2 0 2 4

1

10

100

1000

t

v

-10 -5 0 5 10

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

t

b

26M. Assanioussi, A. Dapor, K. Liegener, T. Pawlowski, PRL121

(2018) 081303.



3.1 mLQC - I (Cont.)

In the b− branch, we have

H2 =
8πGρ

3

(
1− ρ

ρIc

)1 + γ2

γ2 + 1

( √
ρ/ρIc

1 +
√
1− ρ/ρIc

)2


ρ̇+ 3H(ρ+ P) = 0

In the limit ρ/ρIc ≪ 1, we find

H2 ≈ 8πG

3
ρ,

ä

a
≈ −4πG

3
(ρ+ 3P)

— GR limit



3.1 mLQC - I (Cont.)

In the b+ branch, we have

H2 =
8πGαρΛ

3

(
1− ρ

ρIc

)1 +
 1− 2γ2 +

√
1− ρ/ρIc

4γ2
(
1 +

√
1− ρ/ρIc

)
 ρ

ρIc


ρ̇+ 3H(ρ+ P) = 0

Gα ≡ αG = (1− 5γ2)G/(1 + γ2)

ρΛ ≡ 3/[8πGα∆(1 + γ2)2] ≃ O (ρPl).

In the limit ρ/ρIc ≪ 1, we obtain

H2 ≈ 8πGα
3

(ρ+ ρΛ) ,
ä

a
≈ −4πGα

3
(ρ+ 3P− 2ρΛ)

— GR limit but with a modified Gα and a cosmological
constant ρΛ



3.1 mLQC - I (Cont.)
If this branch lies in the post-bounce universe where we live,
then there are several phenomenological problems:

First, for γ ≈ 0.2375, we have

ρΛ ≈ 0.03ρPl ≃ 10120ρob,

which leads to the well-known cosmological problem.

Another problem is related to the primordial 4He
abundance, due to the modification of the effective
Newtonian constant Gα 27,

H2 =
8πGα
3

ρΛ

(
1− ρ

ρIc

)1 +
 1− 2γ2 +

√
1− ρ/ρIc

4γ2
(
1 +

√
1− ρ/ρIc

)
 ρ

ρIc


Gα = (1− 5γ2)G/(1 + γ2).

27S. M. Carroll and E. A. Lim, Phys. Rev. D70, 123525 (2004).



3.1 mLQC - I (Cont.)

The current constraint is 28,∣∣∣∣GαG − 1

∣∣∣∣ ≤ 1

8

For γ ≈ 0.2375, we find that∣∣∣∣GαG − 1

∣∣∣∣ ≃ 0.32 >
1

8

Thus, the b+ branch is unsuitable to describe an
expanding universe such as ours if we use the
observational constraints from either the cosmological
constant or BBN 29.

28C. Patrignani et al. [Particle Data Group], Chin. Phys. C40,

100001 (2016).

29B.-F. Li, P. Singh, AW, PRD97 (2018) 084029.



3.2 mLQC - II

On the other hand, due to the spatial homogeneity and
isotropy, one can also set the spin connection Γi

a to zero,
so the connection Aia is proportional to the extrinsic
curvature Kia,

Aia = Γi
a + γKia = γKia.

Then, a symmetry-reduced classical Hamiltonian is
obtained.
Although it also consistent of two terms, Euclidean and
Lorentz, now the Lorentz term takes a different form.



3.2 mLQC - II
Up on the quantization, by following the same procedure of
Thiemann, the effective Hamiltonian now is given by 30,

HmLQC−II = − 3v

2πGλ2γ2
sin2

(
λb

2

){
1 + γ2 sin2

(
λb

2

)}
+HM (8)

In 31, we referred this model was as mLQC-II (modified
LQC-II model).
Then, Hamilton’s equations read

v̇ =
{
v,HmLQC−II

}
=

3v sin(λb)

γλ

{
1 + γ2 − γ2 cos (λb)

}
,

ḃ =
{
b,HmLQC−II

}
= −

6 sin2
(
λb
2

)
γλ2

{
1 + γ2 sin2

(
λb

2

)}
− 4πGγP

30J. Yang, Y. Ding, Y. Ma, PLB682 (2009) 1.

31B.-F. Li, P. Singh, AW, PRD98 (2018) 066016.



3.2 mLQC - II (Cont.)

In terms of ρ, P, the FR equations read 32,

H2 =
8πGρ

3

(
1 + γ2 ρ

ρc

)(
1− (γ2 + 1)ρ/ρc

(1 +
√
γ2ρ/ρc + 1)2

)
,

ρ̇+ 3H(ρ+ P) = 0

Similar to LQC and mLQC-I, in this model the big bang
singularity is also replaced by a quantum bounce but now
at

ρ = ρIIc ≡ 4(1 + γ2)ρc.

32B.-F. Li, P. Singh, AW, PRD97 (2018) 084029..



3.2 mLQC - II (Cont.)

In addition, the bounce now is symmetric.
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3.2 mLQC - II (Cont.)
Then, several natural questions rise:

Is the big bang singularity still resolved?

Is the slow-roll inflation still an attractor?

Are the resulted power spectra and non-Gaussianities still
consistent with observations?

Are there any observational signatures?

...
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4.1 Dynamical Systems
Qualitative dynamics plays an important role 33, whenever
analytical solutions are hard to obtain, as in the present
cases, and reveals details of the existence of attractors
and asymptotic behavior.

Studying phase space portraits of dynamical variables, one
can easily identify the slow-roll inflationary separatrices
before entering the reheating phase.

33Oleg I. Bogoyavlensky, Methods in the Qualitative Theory of

Dynamical Systems in Astrophysics and Gas Dynamics, Springer-Verlag

Berlin Heidelberg, 1985.



4.1 Dynamical Systems (Cont.)
In LQC, qualitative dynamics has been already studied for
several potentials, including power-law, Starobinsky, and
α-attractor 34.

34P. Singh and K. Vandersloot, PRD72, 084004 (2005);

E. Ranken, P. Singh, PRD85, 104002 (2012);

A.Ashtekar and D. Sloan, GRG43, 3619 (2011);

A. Corichi and A. Karami,PRD83, 104006 (2011);

I. Agullo, A. Ashtekar and W. Nelson,CQG30, 085014 (2013);

B. Bonga and B. Gupt, PRD93, 063513 (2016);

T. Zhu, AW, G. Cleaver, K. Kirsten and Q. Sheng,

PLB773, 196 (2017); PRD96, 083520 (2017);

M. Shahalam, M. Sharma, Q. Wu, AW, PRD96, 123533 (2017);

M. Shahalam, M. Sami, AW, PRD98 (2018) 043524.



4.1 Dynamical Systems (Cont.)
Recently, we considered several popular potentials:
chaotic, Starobinsky, monodromy, non-minimal Higgs, and
exponential, in all three models, LQC, mLQC-I, and
mLQC-II 35.

In the following I shall report only the results for the
fractional monodromy potential, as in other cases similar
conclusions are obtained.

35B.-F. Li, P. Singh, AW, PRD97 (2018) 084029; PRD98 (2018) 066016;

arXiv:1906.01001.



4.1 Dynamical Systems (Cont.)
Starting from the Klein-Gordon equation of the scalar field,

ϕ̈+ 3HIϕ̇+ V,ϕ = 0,

HI: the Hubble parameter for LQC, mLQC-I or mLQC-II, we
define two dimensionless variables,

X ≡ ϵϕ

√
V

ρIc
, Y ≡ ϕ̇√

2ρIc
, ϵϕ = ±1

which satisfy,
X2 + Y2 =

ρ

ρIc
≤ 1.



4.1 Dynamical Systems (Cont.)
With the help of the Friedmann equation, the Klein-Gordon
equation can be written in an autonomous system,

Ẋ =
ϵϕV,ϕY√

2V
, Ẏ = −3HIY− V,ϕ√

2ρIc
.

V,ϕ, V: functions of X, Y.

The equation of state,

wϕ ≡ ρ

P
= 1− 2

1 + (Y/X)2
=

{
+1, Y/X ≫ 1,

−1, Y/X ≃ 0.



4.2 Dynamics of Monodromy Potential

The monodromy potential

V(ϕ) = V0

∣∣∣∣ ϕmPl
∣∣∣∣p , (0 < p ≤ 1)

inspired by string/M-Theory and supergravity, has received
lots of attention lately, as it fits the CMB data quite well 36.
A modification of the potential has been proposed 37,

V = V1

∣∣∣∣ ϕϕ0

∣∣∣∣p [1 + (ϕ0

ϕ

)n] p−2
n

= V1 ×


∣∣∣ ϕ
ϕ0

∣∣∣p , ∣∣∣ ϕ
ϕ0

∣∣∣≫ 1,∣∣∣ ϕ
ϕ0

∣∣∣2 , ∣∣∣ ϕ
ϕ0

∣∣∣≪ 1.

which alleviates the discontinuity problem of the original
monodromy potential in the reheating phase (ϕ ≃ 0).

36P. A. R. Ade et al., Astron. Astrophys. 594, A20 (2016).

37S. S. Mishra, V. Sahni, A. V. Toporensky, PRD98, 083538 (2018).



4.2 Dynamics of Monodromy Potential (Cont.)

In the pre-bounce phase, the origin is a repeller
In the post-bounce phase, the origin is an attractor
Inflation happens when |Y/X| ≪ 1.
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4.3 Probability of Slow-Roll Inflation in mLQCs
Let us first consider the phase space S of the modified FR
equations, which consists of four variables, v, b and ϕ, pϕ.
Then, the symplectic form on the 4D phase space is

Ω = dpϕ ∧ dϕ+
dv ∧ db

4πGγ
.

On the other hand, the phase space S is isomorphic to a
2D gauge-fixed surface Γ̂ of Γ̄, which is intersected by
each dynamical trajectory once and only once.
Since b satisfies,

ḃ = −4πG(ρ+ P),

it is monotonically decreasing, as long as the matter field
satisfies the weak energy condition ρ+ P ≥ 0. Thus, a
natural parameterization of this 2D surface is b = b0.



4.3 Probability of Slow-Roll Inflation in mLQCs (Cont.)
The Hamiltonian constraint C reduces the 4D phase space
to the hypersurface Γ̄,

pAϕ = v
{
−2
[
ĤA

grav + V(ϕ)
]}1/2

,

dpAϕ
∣∣
Γ̂

=
pAϕ
v
dv− v2V,ϕ

pϕ
dϕ.

A = I, II, ĤA
grav ≡ v−1HA

grav(v, b0).

Then, the pulled-back symplectic structure Ω̂ reads

Ω̂A
∣∣∣
Γ̂
=
{
−2
[
ĤA

grav(b0) + V(ϕ)
]}1/2

dϕ ∧ dv.

The Liouville measure dµ̂L on Γ̂ is given by

dµ̂A
L =

{
−2
[
ĤA

grav(b0) + V(ϕ)
]}1/2

dϕdv.



4.3 Probability of Slow-Roll Inflation in mLQCs (Cont.)
The key observation is that dµ̂L does not depend on v. As
a result, although the integral

∫
dv is infinite, it will get

cancelled in the probability calculations as it shows up both
in the denominator and the numerator.
Therefore, the measure for the space of physically distinct
solutions can be taken as

dωA =
{
−2
[
ĤA

grav(b0) + V(ϕ)
]}1/2

dϕ.

The 2D phase space Γ̂ is reduced further to an interval
S0 = {ϕ : ϕ ∈ (ϕmin, ϕmax)}.
It should be noted that such a defined measure depends
explicitly on b0, a choice that is arbitrary. However, in LQC
there exists a preferred one, that is,

b0 = b (tB) . (9)



4.3 Probability of Slow-Roll Inflation in mLQCs (Cont.)
Thus, the probability of the occurrence of an event E
becomes

P(E) =
1

D

∫
I(E)

{
−2
[
ĤA

grav(b0) + V(ϕ)
]}1/2

dϕ,

I(E): the interval on the ϕB-axis, which corresponds to the
physically distinct initial conditions in which the event E
happens, and D is the total measure

D ≡
∫ ϕmax

ϕmin

{
−2
[
ĤA

grav(b0) + V(ϕ)
]}1/2

dϕ.

Therefore, the probability for the desired slow-roll not to
happen in mLQC-I with a chaotic potential is

PI(not realized) ≲
∫ 0.917

−5.158
dωI∫ ϕI

max
−ϕI

max
dωI

≃ 1.12× 10−5.



4.3 Probability of Slow-Roll Inflation in mLQCs (Cont.)
In mLQC-II, the probability for the desired slow-roll to not
happen is

PII(not realized) ≲ 2.62× 10−6.

It is interesting to note that in LQC, the probability for
desired slow roll inflation to not occur is 38,

PLQC(not realized) ≲ 2.74× 10−6,

which is smaller than the result for mLQC-I and slightly
larger than that for mLQC-II.
Therefore, the desired slow-roll inflation is attractive and
favorable in both LQC and mLQCs!

38A. Ashtekar and D. Sloan, GRG43, 3619 (2011); PLB694, 108 (2011).
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5. Conclusions
We study pre-inflationary dynamics in the frameworks of
LQC and modified LQC’s and find that the replacement of
the big bang singularity by a quantum bounce is a robust
feature against the quantization ambiguities.

The slow-roll inflation is still an attractor and favorable.

In addition, for initially kinetic energy dominated models
(ϕ̇2

B/2 ≫ V(ϕB)), the evolution of the universe is also always
divided into three different phases 39:

(1) Bouncing (2) transition (3) slow-roll inflation

39B.-F. Li, P. Singh, AW, arXiv:1906.01001.



5. Conclusions (Cont.)
The evolution of the expansion factor is universal during
the bouncing phase, and can be well approximated by 40,

a(t) ≃ aB

[
1 +

(
t

tA0

)2
]1/6

, tA0 ≡
(
24πGρAc

)−1/2
(10)

because the corrections in mLQC’s are all of the second
order µ̄. We also obtained analytically higher-order
corrections of (10).
In LQC, the evolutions of the background and linear
perturbations are universal (independent of the initial
conditions and potentials of the scalar field), and can be
well approximated by analytical solutions, as long as
initially (at the quantum bounce) the kinetic energy of the
scalar field dominates, 1

2 ϕ̇
2
B ≫ V(ϕB).

40B.-F. Li, P. Singh, AW, arXiv:1906.01001.



5. Conclusions (Cont.)
Once the background is known, we can also study the
linear scalar and tensor perturbations in the two modified
LQC models, and compare with the numerical ones
obtained recently by Ivan 41, by using, for example, the
analytical method developed in 42.

41I. Agullo, Gen. Rel. Grav. 50 (2018) 91.

42T. Zhu, A. Wang, G. Cleaver, K. Kirsten and Q. Sheng,

PLB773, 196 (2017); PRD96, 083520 (2017).



Thank You!
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