Precision Study of Gluon Saturation: Experimental Analysis versus Theoretical Approach

Bo-Wen Xiao

School of Science and Engineering, CUHK-Shenzhen

G. A. Chirilli, Bo-Wen Xiao, Feng Yuan,
Phys. Rev. Lett. 108, 122301 (2012).
Y. Shi, L. Wang, S.Y. Wei, Bo-Wen Xiao,
Phys. Rev. Lett. 128, 202302 (2022).

QCD and Gauge Symmetry

Trinity of Color:

- Gauge symmetry is w.r.t. the local phase of charge particles.
- The same physics (phase) can be described using different orientations of the arrows (phases of the quark wavefunction) with a compensating gauge field.
- Non-Abelian gauge field theory. Invariant under SU(3) gauge transformation.

Kinoshita-Lee-Nauenberg Theorem

KLN theorem: In a theory with massless fields, transition rates are free of the infrared divergence (soft and collinear) if the summation over initial and final degenerate states is carried out.

- The KLN theorem: infrared divergences appear because some of states are physically "degenerate", but we treat them as different.
- A state with a quark accompanied by a collinear gluon is degenerate with a state with a single quark.

A state with a soft gluon is almost degenerate with a state with no gluon (virtual).

Infrared Safety

- Two kinds of IR divergences: collinear and soft divergences.
- For a suitable defined inclusive observable (e.g., $\sigma_{e^+e^- \rightarrow hadrons}$), there is a cancellation between the soft and collinear singularities occurring in the real and virtual contributions. Kinoshita-Lee-Nauenberg theorem
- Any new observables must have a definition which does not distinguish between

parton \leftrightarrow parton + soft gluon parton \leftrightarrow two collinear partons

• Observables that respect the above constraint are called infrared safe observables. Infrared safety is a requirement that the observable is calculable in pQCD.

e^+e^- annihilation

- Born diagram ($\sim\sim\sim\sim$) gives $\sigma_0 = \alpha_{em}\sqrt{s}N_c\sum_q e_q^2 \left(\frac{4\pi\mu^2}{s}\right)^{\epsilon} \frac{\Gamma[2-\epsilon]}{\Gamma[2-2\epsilon]}$
- NLO: real contribution (3 body final state). $x_i \equiv \frac{2E_i}{Q}$ with $Q = \sqrt{s}$

$$\frac{d\sigma_3}{dx_1 dx_2} = C_F \frac{\alpha_s}{2\pi} \sigma_0 \frac{x_1^2 + x_2^2}{(1 - x_1)(1 - x_2)}$$

Dimensional Regularization

Dimensional regularization:

- Analytically continue in the number of dimensions from d = 4 to $d = 4 2\epsilon$.
- Convert the soft and collinear divergence into poles in ϵ .
- To keep g_s dimensionless, substitue $g_s \to g_s \mu^{\epsilon}$ with renormalization scale μ . At the end of the day, one finds

$$\sigma_r = \sigma_0 \frac{\alpha_s(\mu)}{2\pi} C_F \left(\frac{Q^2}{4\pi\mu^2}\right)^{-\epsilon} \frac{\Gamma[1-\epsilon]}{\Gamma[1-2\epsilon]} \left[\frac{2}{\epsilon^2} + \frac{3}{\epsilon} + \frac{19}{2} - \frac{2\pi^2}{3}\right]$$

$$\sigma_v = \sigma_0 \frac{\alpha_s(\mu)}{2\pi} C_F \left(\frac{Q^2}{4\pi\mu^2}\right)^{-\epsilon} \frac{\Gamma[1-\epsilon]}{\Gamma[1-2\epsilon]} \left[-\frac{2}{\epsilon^2} - \frac{3}{\epsilon} - 8 + \frac{2\pi^2}{3}\right]$$

and the sum $\lim_{\epsilon \to 0} \sigma = \sigma_0 \left(1 + \frac{3}{4} C_F \frac{\alpha_s(\mu)}{\pi} + \mathcal{O}(\alpha_s^2) \right).$

- (Almost) Complete Cancellation between real and virtual.
- For more exclusive observables, the cancellation is not always complete.

Factorization and NLO Calculation

Factorization is about separation of short distant physics (perturbatively calculable hard factor) from large distant physics (Non perturbative).

 $\sigma \sim xf(x) \otimes \mathcal{H} \otimes D_h(z) \otimes \mathcal{F}(k_\perp)$

■ NLO (1-loop) calculation always contains various kinds of divergences.

- Some divergences can be absorbed into the corresponding evolution equations.
- Renormalization: cutting off infinities and hiding the ignorance.
- The rest of divergences should be canceled.
- Hard factor

$$\mathcal{H} = \mathcal{H}_{\rm LO}^{(0)} + \frac{\alpha_s}{2\pi} \mathcal{H}_{\rm NLO}^{(1)} + \cdots$$

should always be finite and free of divergence of any kind.

Large Logarithms

NLO vs NLL Naive α_s expansion sometimes is not sufficient!

	LO	NLO	NNLO	• • •
LL	1	$\alpha_s L$	$(\alpha_s L)^2$	
NLL		α_s	$\alpha_{s}\left(lpha_{s}L ight)$	• • •
•••			•••	

■ Evolution → Resummation of large logs. LO evolution resums LL; NLO ⇒ NLL.

Saturation Physics (Color Glass Condensate)

色玻璃凝聚理论: 描述高能极限下强子内部高密度胶子的涌现性质

- Gluon density grows rapidly as *x* gets small. BFKL evolution!
- Resummation of the $\alpha_s \ln \frac{1}{r} \Rightarrow$ BFKL equation. Hard at NLO! (20 years)
- Many gluons with fixed size packed in a confined hadron, gluons overlap and recombine ⇒ Non-linear QCD dynamics (BK/JIMWLK) ⇒ ultra-dense gluonic matter

■ Saturation = Multiple Scattering (MV model) + Small-x (high energy) evolution

Ultimate Questions and Challenges in QCD

To understand our physical world, we have to understand QCD!

Three pillars of EIC Physics:

- How does the spin of proton arise? (Spin puzzle)
- What are the emergent properties of dense gluon system?
- How does proton mass arise? Mass gap: million dollar question.

EICs: keys to unlocking these mysteries! Many opportunities will be in front of us!

Dual Descriptions of Deep Inelastic Scattering

深度非弹性散射的双重描述:

Bjorken: partonic picture is manifest. Saturation shows up as limit of number density.
 Dipole: the partonic picture is no longer manifest. Saturation appears as the unitarity limit for scattering. Convenient to resum the multiple gluon interactions.

$$F_{2}(x,Q^{2}) = \sum_{f} e_{f}^{2} \frac{Q^{2}}{4\pi^{2}\alpha_{\rm em}} S_{\perp} \int_{0}^{1} \mathrm{d}z \int \mathrm{d}^{2}r_{\perp} \left|\psi\left(z,r_{\perp},Q\right)\right|^{2} \left[1 - S^{(2)}\left(Q_{s}r_{\perp}\right)\right]$$

Wilson Lines in Color Glass Condensate Formalism

The Wilson loop (color singlet dipole) in McLerran-Venugopalan (MV) model

Dipole amplitude $S^{(2)}$ then produces the quark k_T spectrum via Fourier transform

$$\mathcal{F}(k_{\perp}) \equiv \frac{dN}{d^2k_{\perp}} = \int \frac{d^2x_{\perp}d^2y_{\perp}}{(2\pi)^2} e^{-ik_{\perp}\cdot(x_{\perp}-y_{\perp})} \frac{1}{N_c} \left\langle \mathrm{Tr}U(x_{\perp})U^{\dagger}(y_{\perp}) \right\rangle.$$

Geometrical Scaling in DIS

深度非弹性散射总截面[Golec-Biernat, Stasto, Kwiecinski; 01, Munier, Peschanski, 03]

All data (x ≤ 0.01, Q² ≤ 450GeV²) is function of a single variable τ = Q²/Q_s².
 Define Q_s²(x) = (x₀/x)^λGeV² with x₀ = 3.04 × 10⁻³ and λ = 0.288.

Forward hadron production in pA collisions

利用相对稀疏的质子(氘核)作为探针来探测重核中的稠密胶子的性质 [Dumitru, Jalilian-Marian, 02] Dilute-dense factorization at forward rapidity

$$\frac{d\sigma_{\rm LO}^{pA \to hX}}{d^2 p_{\perp} dy_h} = \int_{\tau}^1 \frac{dz}{z^2} \left[x_1 q_f(x_1,\mu) \mathcal{F}_{x_2}(k_{\perp}) D_{h/q}(z,\mu) + x_1 g(x_1,\mu) \tilde{\mathcal{F}}_{x_2}(k_{\perp}) D_{h/g}(z,\mu) \right].$$

- Proton: Collinear PDFs and FFs (Strongly depends on μ^2).; Nucleus: Small-x gluon!
- Early attempts: [Dumitru, Hayashigaki, Jalilian-Marian, 06; Altinoluk, Kovner 11]
 [Altinoluk, Armesto, Beuf, Kovner, Lublinsky, 14]
- Full NLO: [Chirilli, BX and Yuan, 12]

d+Au collisions at RHIC

相对论重离子对撞机上的单强子产生: 氘+金核碰撞/质子+质子碰撞 $R_{d+Au} = \frac{1}{\langle N_{\text{coll}} \rangle} \frac{d^2 N_{d+Au}/d^2 p_T d\eta}{d^2 N_{pp}/d^2 p_T d\eta}$

- Cronin effect at middle rapidity
- **Rapidity evolution of the nuclear modification factors** R_{d+Au}
- Promising evidence for gluon saturation effects

BRAHMS

New LHCb Results

[R. Aaet al. (LHCb Collaboration), Phys. Rev. Lett. 128 (2022) 142004]

$$R_{pPb} = rac{1}{\langle N_{
m coll}
angle} rac{d^2 N_{p+Pb}/d^2 p_T d\eta}{d^2 N_{pp}/d^2 p_T d\eta}$$

Rapidity evolution of the nuclear modification factors R_{pPb} similar to RHIC

NLO diagrams in the $q \rightarrow q$ channel

G. A. Chirilli, Bo-Wen Xiao, Feng Yuan, Phys. Rev. Lett. 108, 122301 (2012).

- Take into account real (top) and virtual (bottom) diagrams together!
- Non-linear multiple interactions inside the grey blobs!
- Integrate over gluon phase space \Rightarrow Divergences!.

Factorization for single inclusive hadron productions

Factorization for the $p + A \rightarrow H + X$ process [Chirilli, BX and Yuan, 12]

- Include all real and virtual graphs in all channels $q \to q, q \to g, g \to q(\bar{q})$ and $g \to g$.
- 1. collinear to target nucleus; rapidity divergence \Rightarrow BK evolution for UGD $\mathcal{F}(k_{\perp})$.
- 2. collinear to the initial quark; \Rightarrow DGLAP evolution for PDFs
- 3. collinear to the final quark. \Rightarrow DGLAP evolution for FFs.

Numerical implementation of the NLO result

Single inclusive hadron production up to NLO

$$\mathrm{d}\sigma = \int x f_a(x) \otimes D_a(z) \otimes \mathcal{F}_a^{x_g}(k_\perp) \otimes \mathcal{H}^{(0)} + \frac{\alpha_s}{2\pi} \int x f_a(x) \otimes D_b(z) \otimes \mathcal{F}_{(N)ab}^{x_g} \otimes \mathcal{H}_{ab}^{(1)}.$$

Consistent implementation should include all the NLO α_s corrections.

- NLO parton distributions. (MSTW or CTEQ)
- NLO fragmentation function. (DSS or others.)
- Use NLO hard factors. [Chirilli, BX and Yuan, 12]
- Use the one-loop approximation for the running coupling
- rcBK evolution equation for the dipole gluon distribution [Balitsky, Chirilli, 08; Kovchegov, Weigert, 07]. Full NLO BK evolution not available.
- Saturation physics at One Loop Order (SOLO). [Stasto, Xiao, Zaslavsky, 13]

Numerical implementation of the NLO result

Saturation physics at One Loop Order (SOLO). [Stasto, Xiao, Zaslavsky, 13]

- Reduced factorization scale dependence!
- Catastrophe: Negative NLO cross-sections at high p_T .
- Fixed order calculation in field theories is not guaranteed to be positive.
- Rapidity sub with kinematic constraints. [Watanabe, Xiao, Yuan, Zaslavsky, 15]

Extending the applicability of CGC calculation

- Goal: find a solution within our current factorization (exactly resum $\alpha_s \ln 1/x_g$) to extend the applicability of CGC. Other scheme choices certainly is possible.
- A lot of logs arise in pQCD loop-calculations: DGLAP, small-*x*, threshold, Sudakov.
- **Breakdown** of α_s expansion occurs due to the appearance of logs in certain PS.
- Demonstrate onset of saturation and visualize smooth transition to dilute regime.
- Add'l consideration: numerically challenging due to limited computing resources.
- Towards a more complete framework. [Altinoluk, Armesto, Beuf, Kovner, Lublinsky, 14; Kang, Vitev, Xing, 14; Ducloue, Lappi and Zhu, 16, 17; Iancu, Mueller, Triantafyllopoulos, 16; Liu, Ma, Chao, 19; Kang, Liu, 19; Kang, Liu, Liu, 20;]

Some thoughts

Spiritual Retreat under the Auspices of the (Color) Trinity

- Sabbatical leave is important!
- Learn new technique and put it aside sometimes.
- Keep trying and take as long as it takes!

Gluon Radiation at the Threshold

Near threshold: radiated gluon has to be soft! $\tau = \frac{p_{\perp}e^{y}}{\sqrt{s}}$ density ($\tau = x_p\xi z \le 1$)

Gluon momentum: $q^+ = (1 - \xi)p_q^+ \rightarrow 0$

Introduce an additional semi-hard scale Λ^2 .

Threshold Logarithms

Y. Shi, L. Wang, S.Y. Wei, Bo-Wen Xiao, Phys. Rev. Lett. 128, 202302 (2022).

- **•** Numerical integration (8-d in total) is notoriously hard in r_{\perp} space. Go to k_{\perp} space.
- In the coordinate space, we can identify two types of logarithms

single log:
$$\ln \frac{k_{\perp}^2}{\mu_r^2} \to \ln \frac{k_{\perp}^2}{\Lambda^2}$$
, $\ln \frac{\mu^2}{\mu_r^2} \to \ln \frac{\mu^2}{\Lambda^2}$; double log: $\ln^2 \frac{k_{\perp}^2}{\mu_r^2} \to \ln^2 \frac{k_{\perp}^2}{\Lambda^2}$,

with $\mu_r \equiv c_0/r_\perp$ with $c_0 = 2e^{-\gamma_E}$.

- Introduce a semi-hard auxiliary scale $\Lambda^2 \sim \mu_r^2 \gg \Lambda_{QCD}^2$. Identify dominant r_{\perp} !
- Dependences on μ^2 , Λ^2 cancel order by order. Choose "natural" values at fixed order.

For running coupling,
$$\Lambda^2 = \Lambda^2_{QCD} \left[\frac{(1-\xi)k_{\perp}^2}{\Lambda^2_{QCD}} \right]^{C_R/[C_R+\beta_1]}$$
. Akin to CSS & Catani *et al.*

Numerical Results for pA spectra

- $\ \ \, \mu^2 = \alpha^2 (\mu_{\min}^2 + p_T^2) \ \& \ \alpha \in [2,4]; \label{eq:min}$
- **RHIC:** $\Lambda^2 \sim Q_s^2$; LHC, larger Λ^2 .
- $\mu \sim Q \geq 2k_{\perp} \ (\alpha > 2)$ at high p_T . 2 \rightarrow 2 hard scattering.
- Estimate higher order correction by varying μ and Λ .
- Threshold enhancement for σ .
- Nice agreement with data across many orders of magnitudes for different energies and p_T ranges

Comparison with the new LHCb data

LHCb data: 2108.13115

▶ Data Link ▶ DIS2021

- $\mu \sim (2 \sim 4) p_T$ with proper choice of Λ
- Threshold effect is not important at low p_T for LHCb data. Saturation effects are still dominant.
- Predictions are improved from LO to NLO.

Summary

- Ten-Year Odyssey in NLO hadron productions in *pA* collisions in CGC.
- Towards the precision test of saturation physics (CGC) at RHIC and LHC.
- Next Goal: Global analysis for CGC combining data from pA and DIS.
- Exciting time of NLO CGC phenomenology with the upcoming EIC.

Threshold resummation in the CGC formalism

Threshold logarithms: Sudakov soft gluon part and Collinear (plus-distribution) part.

Soft single and double logs $(\ln k_{\perp}^2/\Lambda^2, \ln^2 k_{\perp}^2/\Lambda^2)$ are resummed via Sudakov factor. Performing Fouier transformations

$$\int \frac{d^2 r_{\perp}}{(2\pi)^2} S(r_{\perp}) \ln \frac{\mu^2}{\mu_r^2} e^{-ik_{\perp} \cdot r_{\perp}} = -\int \frac{d^2 l_{\perp}}{\pi l_{\perp}^2} \left[F(k_{\perp} + l_{\perp}) - J_0(\frac{c_0}{\mu} l_{\perp}) F(k_{\perp}) \right]$$
$$= -\frac{1}{\pi} \int \frac{d^2 l_{\perp}}{(l_{\perp} - k_{\perp})^2} \left[F(l_{\perp}) - \frac{\Lambda^2}{\Lambda^2 + (l_{\perp} - k_{\perp})^2} F(k_{\perp}) \right] + F(k_{\perp}) \ln \frac{\mu^2}{\Lambda^2}.$$

• Two equivalent methods to resum the collinear part $(P_{ab}(\xi) \ln \Lambda^2/\mu^2)$:

- 1. Reverse DGLAP evolution; 2. RGE method (threshold limit $\xi \rightarrow 1$).
- Introduce forward threshold quark jet function $\Delta^q(\Lambda^2, \mu^2, \omega)$, which satisfies

$$\frac{\mathrm{d}\Delta^{q}(\omega)}{\mathrm{d}\ln\mu^{2}} = -\frac{\mathrm{d}\Delta^{q}(\omega)}{\mathrm{d}\ln\Lambda^{2}} = -\frac{\alpha_{s}C_{F}}{\pi} \left[\ln\omega + \frac{3}{4}\right]\Delta^{q}(\omega) + \frac{\alpha_{s}C_{F}}{\pi} \int_{0}^{\omega} \mathrm{d}\omega' \frac{\Delta^{q}(\omega) - \Delta^{q}(\omega')}{\omega - \omega'}$$

Consistent with the threshold resummation in SCET[Becher, Neubert, 06]!