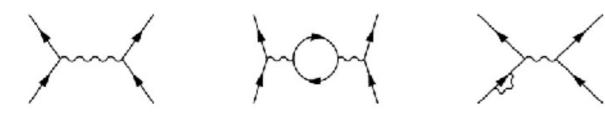
Scattering Amplitudes @ intersection of QFT, Strings & Maths

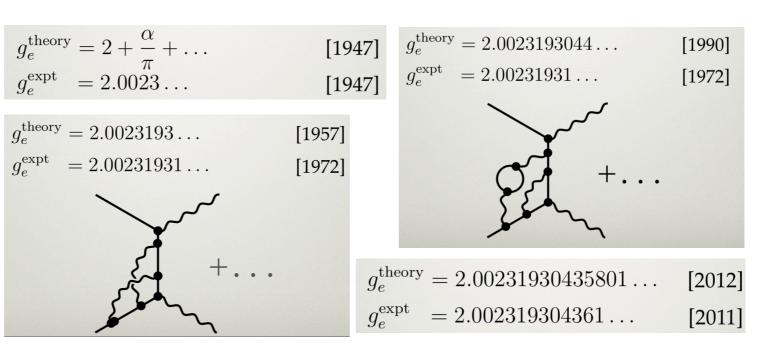
何颂

Institute of Theoretical Physics Chinese Academy of Sciences

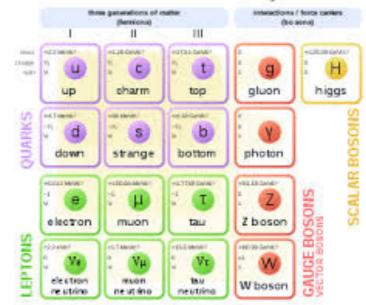
partly based on works with N. Arkani-Hamed, T. Lam JHEP 02 (2021) 069, SIGMA (2022) ... N. Arkani-Hamed, T. Lam, G. Salvatori, H. Thomas (2019) ... N. Arkani-Hamed, Y. Bai, G.Yan JHEP 1805 (2018) 096 & F. Cachazo, E. Y. Yuan PRL 113 (2014) PRD90 (2014) JHEP 1407 (2014) JHEP 1501 (2015) JHEP 1507 (2015) PRD92 (2015) JHEP 1608 (2016) ...


> Peng Huanwu Center for Fundamental Theory USTC March 8, 2022

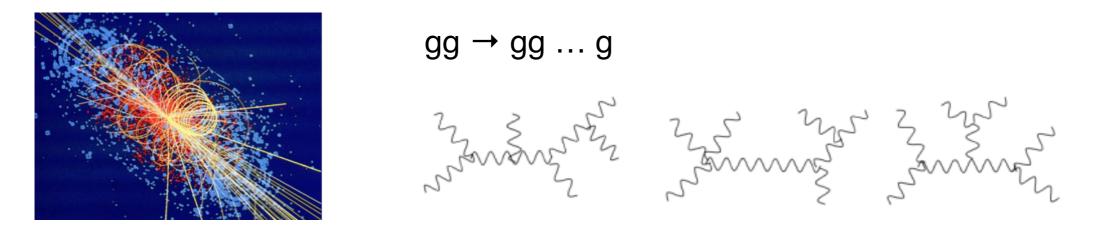
Quantum Field Theory (QFT)


Most successful theoretical framework to describe Nature: particle physics, condensed matter, cosmology, strings

inevitable & universal: consequence of QM & relativity! fundamental interactions unified @ high energy


simple picture in perturbation theory: Feynman diagrams

incredible accuracy! e.g. g-factor of electron magnetic dipole moment

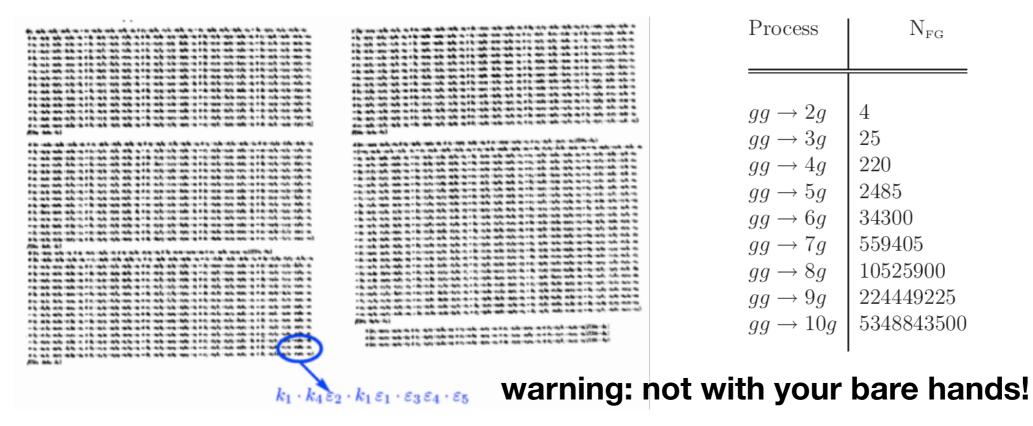


Standard Model of Elementary Particles

S-matrix in QFT

• Colliders at high energies need amplitudes of many gluons/quarks

• Fundamental level our understanding of QFT & gravity incomplete: strong coupling, dualities, hidden symmetries, quantum gravity & cosmology...


simplicity, new structures & relations seen in perturbative scattering amplitudes!

• Goal: new tools, ideas & theories for QFT+gravity from studying S-matrix

Impossible computations?

Feynman diagrams manifest locality & unitarity, but usually no manifest symmetry

Challenging for more legs/loops: many diagrams, lots of terms, huge redundancy

Gluons: 2 states $h = \pm$, but manifest locality requires 4 states (huge redundancies) Much worse for graviton scattering: redundancies from diff invariance

A prior no reason to expect any simplicity or structures in the S-matrix

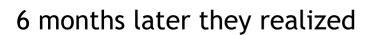
Parke-Taylor formula

1985: heroic calculation of tree amp gg \rightarrow gggg (results ~10 pages)

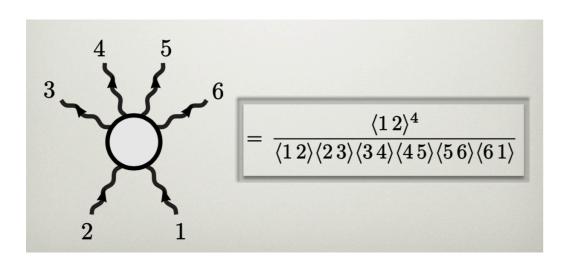
GLUONIC TWO GOES TO FOUR

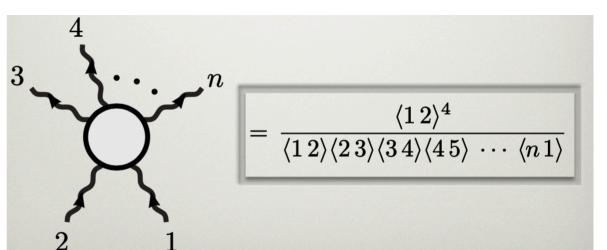
Stephen J. Parke and T.R. Taylor Fermi National Accelerator Laboratory P.O. Box 500, Batavia, IL 60510 U.S.A.

$\label{eq:standardiset} \begin{array}{llllllllllllllllllllllllllllllllllll$	$\label{eq:states} \begin{split} & \text{masses} \\ & \{ \boldsymbol{\theta} = \boldsymbol{\xi}_{ij} \; \left[\boldsymbol{\theta}_{ij} \text{mass} \cdot \boldsymbol{\theta}_{ij} \text{mass}_{ij} \right], \\ & \boldsymbol{\theta}_{ij} = \boldsymbol{\xi}_{ij} \; \left[\boldsymbol{\theta}_{ij} \text{mass}_{ij} \cdot \boldsymbol{\theta}_{ij} \text{mass}_{ij} \text{mass}_{ij}$	$\label{eq:states} \begin{array}{ccc} & \mbox{states} \\ & \mbox{transform} \\ & \mbo$	ی میدین (ید - رایز (یعدیم) , (ید - رایز (یعدیم) , (ید - رایز (یعدیم) , (ید - رایز (یعدیم) - مانیم), (ید - رایز (یعدیم) - مانیم), (ید - رایز (یعدیم) - (ید - رایز (یعدیم) - (ید - رایز (یعدیم) , (ید - رایز (یعدیم) , (ید - رایز (یعدیم) ,	$\label{eq:2.1} \begin{array}{llllllllllllllllllllllllllllllllllll$	$\label{eq:2.1} \begin{array}{c} 2 & \text{MARKET} \\ \hline \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	٤٠ المحمد الحالي ٤٤ - الحالي (المحد الحالية). ٤٤ - الحالي (المحد الحالية).
۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰	عد: (م المعلم) (1) ((((((((((((((((((The second secon	and the second sec	A management


Our result has succesfully passed both these numerical checks.
Details of the calculation, together with a full exposition of our
techniques, will be given in a forthcoming article. Furthermore, we
hope to obtain a simple analytic form for the answer, making our result
not only an experimentalist's, but also a theorist's delight.

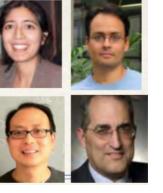
MHV: Maximally helicity violating (all out-going) amps for all + or one - vanish!


> Spinor-helicity variables $\begin{array}{l} p^{\mu}=\sigma_{a\dot{a}}^{\mu}\lambda_{a}\tilde{\lambda}_{\dot{a}}\\ \langle 12\rangle=\epsilon_{ab}\lambda_{a}^{(1)}\lambda_{b}^{(2)}\\ [12]=\epsilon_{\dot{a}\dot{b}}\tilde{\lambda}_{\dot{a}}^{(1)}\tilde{\lambda}_{\dot{b}}^{(2)}\\ \end{array}$ (Mangano, Parke, Xu 1987)

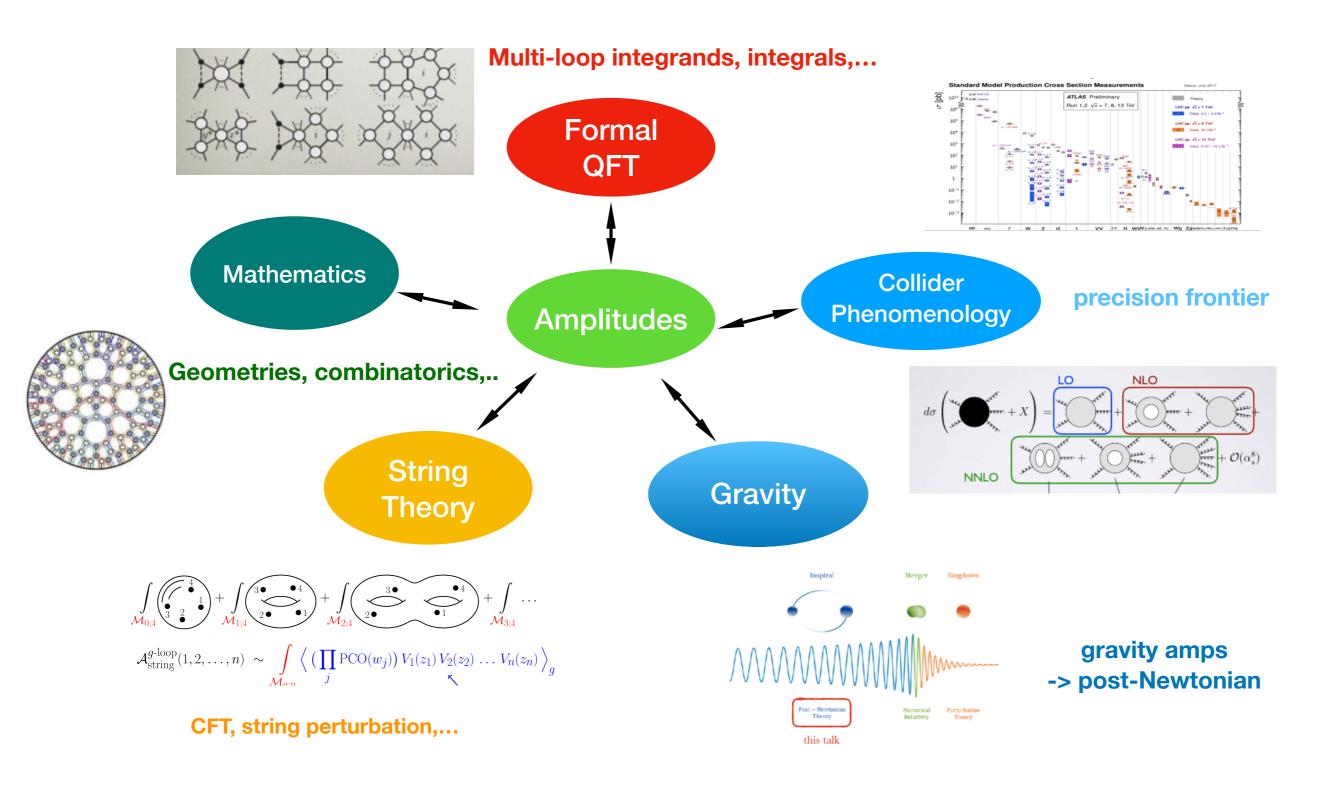

ABSTRACT

The cross section for two gluon to four gluon scattering is given in a form suitable for fast numerical calculations.

A very selective history


- 1986 2000: spinor-helicity + generalized unitarity
 - → tree & one-loop gluon amps in QCD & N=4 SYM... powerful generalized unitarity method: cuts of loops = products of tree amp
- Twistor strings (2003) … BCFW recursion: all trees in QCD
 new unitarity methods → one-loop QCD & more
 - →NLO revolution -> NNLO, loop integrands, integrals & polylogs, ...

New math structures (2009-): Grassmannian for all-loop integrands in N=4 SYM (hydrogen atom of QFT) + bootstrap, integrability, AdS/CFT...


double copy (gauge theories, gravity & strings)—> CHY formulation etc. geometric pictures for QFT & strings —> amplituhedron, associahedron, etc.

(numerous topics & names omitted here...)

Who do we connect to?

S-matrices for (super)-gravity

GR as Effective Field Theory (EFT): computing perturbative amps for (super)-gravity

Crucial new insight for quantum gravity: UV behavior, hidden symmetries/structures?

Important for classical gravity e.g. post-newtonian for GW (potential, angle...)

However, Feynman diagrams seem hopeless

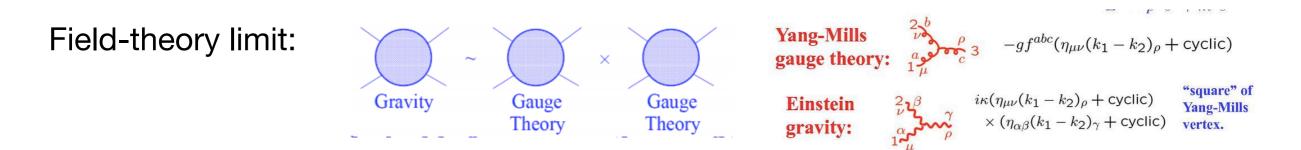
(infinite # of vertices, even 3-pt has >100 terms!)

~10²⁰ TERMS No surprise it has never been calculated via Feynman diagrams.

4 loops

3 loops

On-shell: all gravity trees can be computed & directly related to tree in Yang-Mills ("QCD meets gravity")


Generalized unitarity —> recycle trees into loops

5 loops ~10³¹ More terms than TERMS atoms in your brain!

N=8 supergravity amps computed to 5 loops, with surprisingly good UV behavior!

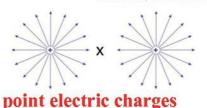
Gravity=(Gauge Theory)^2

1985: Kawai, Lewellen, Tye (KLT): "closed string amp=open-string amp^2"

2008: Bern, Carrasco, Johansson (BCJ): double-copy construction

$$\mathscr{A}_{4}^{\text{tree}} = g^{2} \left(\frac{n_{s}c_{s}}{s} + \frac{n_{t}c_{t}}{t} + \frac{n_{u}c_{u}}{u} \right)$$

$$n_s + n_t + n_u = 0$$

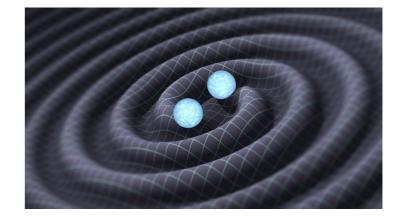

$$\mathscr{A}_{4}^{\text{tree}} \Big|_{c_{i} \to n_{i}} \equiv \mathscr{M}_{4}^{\text{tree}} = \frac{n_{s}^{2}}{s} + \frac{n_{t}^{2}}{t} + \frac{n_{u}^{2}}{u}$$

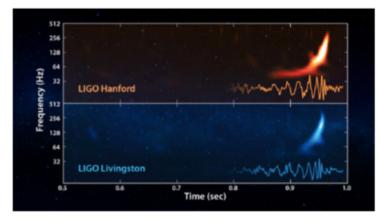
extended to classical solutions, curved background etc.-> hidden symmetry & structure of classical gravity!

black hole

Schwarzschild ~ (Coulomb)²

Gravitational waves


How to help calculations needed for LIGO (inspiral)?


Classical limits from quantum scattering amplitudes

New tools e.g. double-copy simplifies GW calculations

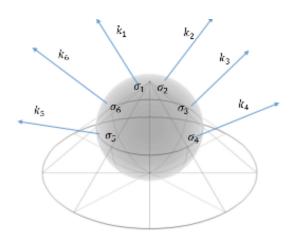
Post-Newtonian/Minkowski from (EFT) amplitudes

[Goldberger, Rothstein, Porto,...] [Bern, Cheung, Roiban, Shen, Solon, Zeng; ...] [...]

			0PN	1PN	2PN	3PN	4PN	5PN	 2 - 3
0PI	M:	1	v^2	v^4	v^6	v^8	v^{10}	v^{12}	
(1PI	M:		1/r	v^2/r	v^4/r	v^6/r	v^8/r	v^{10}/r	 1 4
2PI	M:			$1/r^{2}$	v^{2}/r^{2}	v^4/r^2	v^6/r^2	v^{8}/r^{2}	
3P	M:				$1/r^3$	v^{2}/r^{3}	v^{4}/r^{3}	v^6/r^3	 $1 \xrightarrow{\uparrow \ell_1 \\ } \ell_2 \\ \downarrow \\ \downarrow \\ \downarrow \\ 4 \\ 4 \\ \ell_2 \\ \downarrow \\ \downarrow \\ 4 \\ \ell_3 \\ \downarrow \\ 4 \\ \ell_4 $
4PI	M:					$1/r^{4}$	v^{2}/r^{4}	v^{4}/r^{4}	 1 —
	•								

New formulation of QFT

- Twistor string theory [Witten 2003]: worldsheet model for N=4 SYM tree amps failed at loops, but led to BCFW, CSW & many new developments!
- How universal is Witten's twistor string? no SUSY? any spacetime dim? more general theories: (pure) Yang-Mils, gravity, effective field theories? loop level?
- CHY formulation: scattering of massless particles in any dim [Cachazo, SH, Yuan 2013]
 - compact formulas for amps of gluons, gravitons, scalars, (fermions?!) etc.
 - *manifest* gauge (diff) invariance, soft theorems, double-copy & new relations, etc.
 - *worldsheet picture*: ambitwsitor strings etc. [Mason, Skinner; Adamo et al; Berkovits; Siegel...]


Scattering equations & CHY formulas

$$E_a := \sum_{b=1, b \neq a}^n rac{k_a \cdot k_b}{\sigma_a - \sigma_b} = 0 \,, \qquad a = 1, 2, \dots, n \quad \text{[CHY 2013]}$$

- saddle-point equations of "Koba-Nielson" factor in string theory [Gross, Mende;...]
- moduli space of n-punctured Riemann sphere knows locality (& unitarity) of tree amps

$SL(2, \mathbb{C})$ symmetry:

n-3 variables, n-3 equations

$$M_n = \int \underbrace{\frac{d^n \sigma}{\operatorname{vol} \operatorname{SL}(2, \mathbb{C})}}_{d\mu_n} \prod_a' \delta(E_a) \,\mathcal{I}(\{k, \epsilon, \sigma\}) = \sum_{\{\sigma\} \in \text{solns.}} \frac{\mathcal{I}(\{k, \epsilon, \sigma\})}{J(\{\sigma\})}$$

- New picture: scattering of massless particles via worldsheet correlators
- Feynman diagrams, Lagrangians, even spacetime itself become emergent

Gluons & Gravitons: gauge (diff.) invariance [CHY]

• Two basic building blocks: color & kinematics (polarization)

$$PT(\alpha) := \frac{1}{\sigma_{\alpha(1),\alpha(2)}\sigma_{\alpha(2),\alpha(3)}\cdots\sigma_{\alpha(n),\alpha(1)}} \qquad Pf'\Psi \sim \langle V^{(0)}(\sigma_1)\ldots V^{(-1)}(\sigma_i)\ldots V^{(-1)}(\sigma_j)\ldots V^{(0)}(\sigma_n) \rangle$$

• All tree amps in bi-adjoint scalar, Yang-Mills and Einstein Gravity!

$$\begin{split} \mathrm{Pf}'\Psi &:= \frac{\mathrm{Pf}|\Psi|_{i,j}^{i,j}}{\sigma_{i,j}} \\ \Psi &:= \begin{pmatrix} A & -C^{\mathsf{T}} \\ C & B \end{pmatrix}, \\ \end{split} \qquad \begin{aligned} & A_{a,b} &:= \begin{cases} \frac{k_a \cdot k_b}{\sigma_{a,b}} & a \neq b \\ 0 & a = b \end{cases}, \\ & B_{a,b} &:= \begin{cases} \frac{\epsilon_a \cdot \epsilon_b}{\sigma_{a,b}} & a \neq b \\ 0 & a = b \end{cases}, \\ & A_{a,b} &:= \begin{cases} \frac{\epsilon_a \cdot k_b}{\sigma_{a,b}} & a \neq b \\ -\sum_{c \neq a} C_{a,c} & a = b \end{cases}, \end{split}$$

Defining feature: Pfaffian is gauge invariant by SE -> gauge & diff. invariance!

Loops & (ambi-twistor) strings $(\underbrace{\bullet}_{2\bullet}^{\bullet}, \underbrace{\bullet}_{1}) \xrightarrow{\tau \to i\infty} (\underbrace{\bullet}_{2\bullet}^{\bullet}, \underbrace{\bullet}_{1})$

- $\begin{array}{c} \bullet n \\ \vdots \\ 2 \bullet \bullet 1 \end{array} \qquad \xrightarrow{\tau \to i\infty} \qquad \begin{array}{c} \bullet n \\ \vdots \\ 2 \bullet \bullet 1 \end{array} \qquad \cong \qquad \begin{array}{c} \bullet n \\ 2 \bullet \bullet 1 \end{array}$
- Ambitwistor strings (2d chiral CFT) [Mason, Skinner]: derive CHY formulas from CFT correlators
- Higher genus too difficult! -> loop amps from nodal Riemann sphere [Geyer, Mason, Monteiro, Tourkine,...]
- possible to obtain higher-genus string correlators from ambitwistor/CHY integrands [Geyer, Monteiro;...]

• another method: 1-loop CHY from forward limit of trees in higher dim, $\ell^2 \neq 0$ [SH, Yuan; CHY]

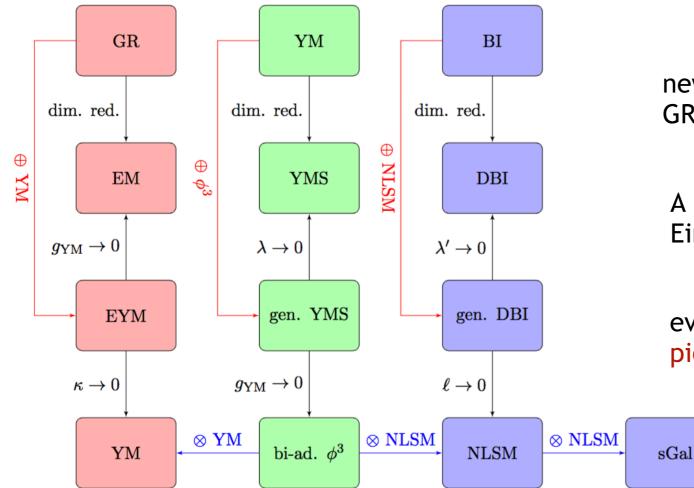
$$M^{(1)} = \int \frac{d^d \ell}{\ell^2} \lim_{k_{\pm} \to \pm \ell} \int \prod_{i=2}^n \delta\left(\frac{\ell \cdot k_i}{\sigma_i} + \sum_{j=1, j \neq i}^n \frac{k_i \cdot k_j}{\sigma_{ij}}\right) \hat{I}(\ell)$$

- 1-loop KLT formula for gauge theories + gravity, etc., manifest double copy [SH Schlotterer, 17 PRL] equivalence of two methods: both from superstring amps [SH Schlotterer, Y. Zhang 18] higher loops?
- New relations: QFT amps <-> string amps, also for bosonic/heterotic strings [SH, F. Teng Y. Zhang 19 PRL]

Goldstone particles from Adler zero

EFTs for Goldstone particles (symmetry breaking) e.g. pions, DBI, Galileon etc. [CHY 14] [Cheung et al 14]

What is special about them? Amplitudes vanish in soft limit: enhanced Adler zero!


From CHY: a new ingredient with Adler zero $(\det' A_n)|_{p_i \sim \mathcal{O}(\tau)} = \mathcal{O}(\tau^2)$.

- $M_n = \int d\mu_n \; (\mathrm{Pf}'A)^2 \; \mathrm{PT}$, adjoint scalars with two derivative coupling? U(N) NLSM (the chiral Lagrangian) $\mathcal{L} = \text{Tr}(\partial_{\mu}U^{+}\partial^{\mu}U)$
- $M_n = \int d\mu_n \, (\mathrm{Pf}'A)^2 \, \mathrm{Pf}'\Psi$, higher-derivative-coupled photons? Born-Infeld theory (BI) & DBI by dim reduction $\mathcal{L} = \sqrt{-\det(\eta_{\mu\nu} - \ell F_{\mu\nu} - \ell^2 \partial_{\mu} \phi \partial_{\nu} \phi)}$
- a special Galileon (single scalar with many derivatives) $M_n^{sGal} = \int d\mu_n \ (Pf'A)^4$

	Gauge Theories					
Ι	GR (s=2)	YM (s=1)	BI (s=1)			
Ш	YM (s=1)	ϕ^3 (s=0)	NLSM (s=0)			

	Effective Field Theories						
Ι	sGal (τ^3) NLSM (τ^1) BI (τ^1) DBI (τ^2)						
	NLSM (τ^1)	$\phi^3~(au^{-1})$	YM ($ au^{-1}$)	YMs ($ au^{0}$)			

A landscape of massless theories

new CHY from old ones by e.g. dim reduction GR -> Einstein-Maxwell, YM -> YM-scalar

A new operation as direct sum of two particles -> Einstein-Yang-Mills, Yang-Mills + bi-adjoint scalars

even more interesting relations [CHY 14][Cheung et al]: pions from special dimension reduction of gluons!

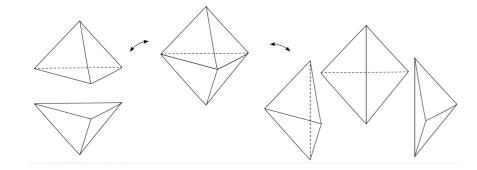
These amplitudes are strongly constrained (even uniquely determined) by symmetries: gauge invariance & Adler zero; deeply connected to each other!

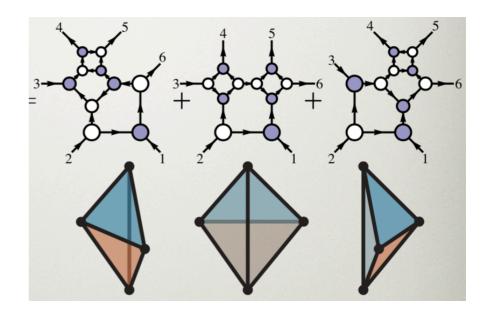
Double-copy as direct product

- Double copy " $GR \sim YM \otimes YM$ " or more precisely $GR = YM^2/\phi^3$
- CHY: KLT kernel is the inverse of bi-adjoint scalar amps: S=m^-1
- **Direct product** of amplitudes in two theories: discover new double-copies

Double copies from CHY					
$A\equiv L\otimes R=\int d\mu_n \ I_L \ I_R$	$A = \sum_{\alpha,\beta \in S_{n-3}} A_L(\alpha) m^{-1}(\alpha \beta) A_R(\beta)$				
$A_L(lpha) = \int d\mu_n \ I_L \ PT(lpha)$	L⊗R	L	R		
	GR	YM	ΥM		
$A_R(\beta) = \int d\mu_n \ I_R \ PT(\beta)$	BI	YM	NLSM		
J J	DBI	YMS	NLSM		
$m(lpha eta) = \int d\mu_n PT(lpha) PT(eta)$	sGal	NLSM	NLSM		
J					

• None of these manifest from Lagrangian/Feynman diagrams: deeper reason?

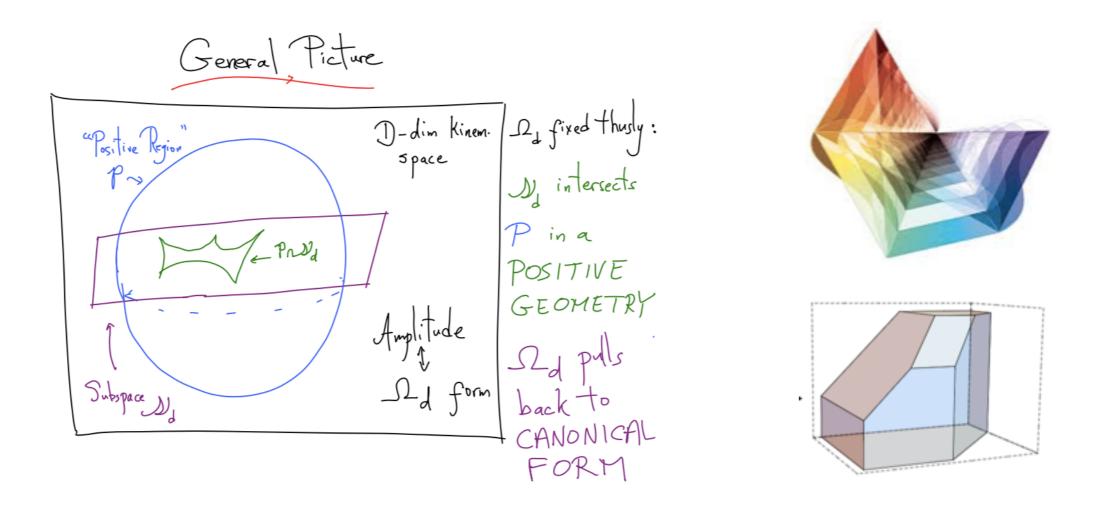

Amplituhedron


N=4 Super-Yang-Mills: hydrogen atom of QFT

deep connections with geometries, reflecting
the infinite-dim symmetry -> integrability

Amplitudes are volume of some "polytopes"! emergence of QM & spacetime from geometry!

New maths: positive geometry (real) with a unique canonical form (complex): only logarithmic singularities @ boundaries (residues recursively defined)

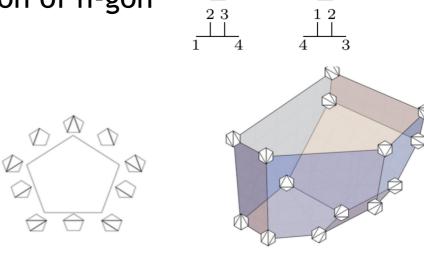

 $Y = C \cdot Z$ external data: mom-twistors

common gen. of polytopes & Grassmannians

differential forms in kinematic space for any helicity amplitudes in any gauge theories [SH, C. Zhang, 18]

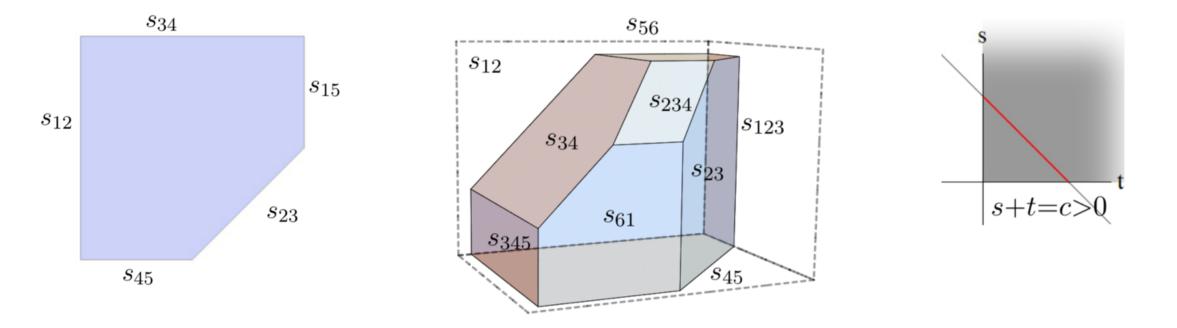
-> momentum amplituhedron for SYM and ABJM! [Damagard, Ferro, Lukowski, 19 ; SH, C. Kuo, Y. Zhang, 21]

Amplitudes as differential forms


Generalize amplituhedron to general theories in any dimensions (even phi^3)! Bi-adjoint scalar: Amp (form)="volume" of associahedron in kinematic space Geometrize color & its duality to kinematics, forms for gluon/pion amps etc. Locality & unitarity emerges purely from geometries @ infinity of spacetime!

Kinematic associahedron

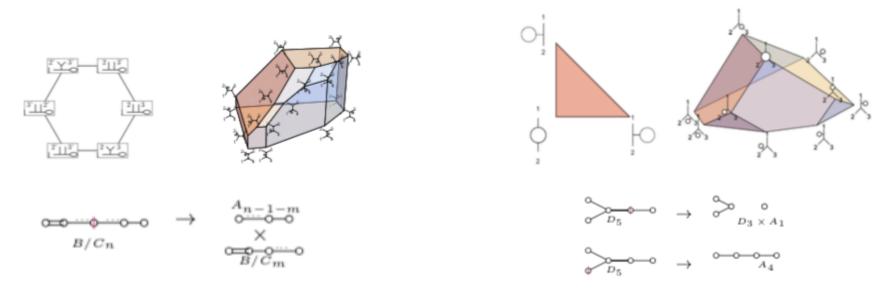
Associahedron of dim. (n-3): faces 1:1 corresp. with triangulation of n-gon


Positive region Δ_n : all planar variables $s_{i,i+1,\dots,j} \ge 0$ (top-dimension)

Subspace H_n : $-s_{ij} = c_{i,j}$ as *positive constants*, for all non-adjacent pairs $1 \le i, j < n$; we have $\frac{(n-2)(n-3)}{2}$ conditions $\implies \dim H_n = n-3$.

Kinematic Associahedron is their intersection! $A_n := \Delta_n \cap H_n$ $e.g. A_4 = \{s > 0, t > 0\} \cap \{-u = \text{const} > 0\}$

encode singularities of any (colored) massless amplitudes at tree level: gluons, pions, etc.



Amplitudes as "Volume" [Arkani-Hamed, SH, Salvatori, Thomas, 2019]

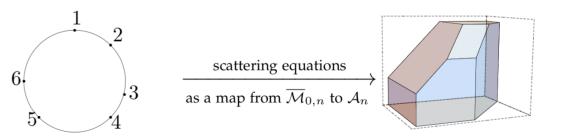
Canonical form of \mathcal{A}_n = Pullback of Ω_n to $H_n \propto$ planar ϕ^3 amplitude!

e.g.
$$\Omega(\mathcal{A}_4) = \Omega_4^{(1)}|_{H_4} = \left(\frac{ds}{s} - \frac{dt}{t}\right)|_{-u=c>0} = \left(\frac{1}{s} + \frac{1}{t}\right) ds$$

 $\Omega(\mathcal{A}_5) = \Omega_5^{(2)}|_{H_5} = \left(\frac{1}{s_{12}s_{34}} + \dots + \frac{1}{s_{51}s_{23}}\right) ds_{12} \wedge ds_{34}$

- Associahedron is the (tree) "amplituhedron" for scalar: amps="volume"
- Feynman-diagram expansion=special triangulation -> many new representations

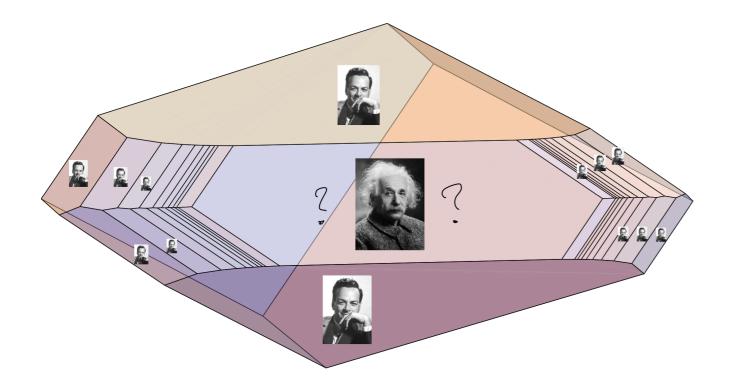
- Extend to "cluster polytope" of finite types: B/C: cyclohedron <--> tadpoles; type D <-> one-loop planar phi³ (all with "factorizing" boundaries)
- Hidden symmetry (invisible in FD's) manifest by geometry (analog in N=4 SYM)


Generalized string amps [Arkani-Hamed, SH, Lam, Thomas, 2019]

A well-known associahedron: minimal blow-up of the open-string worldsheet $\mathcal{M}_{0,n}^+ := \{\sigma_1 < \sigma_2 < \cdots < \sigma_n\}/\mathrm{SL}(2,\mathbb{R})$ [Deligne, Mumford]

The *canonical form* of $\overline{\mathcal{M}}_{0,n}^+$ is the "Parke-Taylor" form

$$\omega_n^{\mathrm{WS}} := \frac{1}{\mathrm{vol} \,[\mathrm{SL}(2)]} \prod_{a=1}^n \frac{d\sigma_a}{\sigma_a - \sigma_{a+1}} := \mathrm{PT}(1, 2, \cdots, n) \, d\mu_n$$


a geometric origin of scattering eqs & CHY

- Generalize $\mathcal{M}_{0,n}$ (worldsheet associahedron) to other types: binary geometries
- Natural "string integrals" for all finite types: lpha'-deform. of loop ϕ^3 amps
- Field-theory (particles) $\alpha' \to 0 = CHY$ formula with $\alpha' \to \infty$ (saddle points)
- Higher-genus surfaces vs. higher-loop amps?

Particles & strings from geometries

- Surfacehedra [Arkani-Hamed et al]: curves on surface w. any genus (all loops!)
- Infinite polytopes: truncations <-> (infinite) cluster algebras & quivers
- Canonical forms -> all-loop non-planar tr(phi^3) integrand

- Now also natural string-like integrals for surfacehedra (infinite product!)
- Appearance of "gravity" (like closed-string) from positivity (open-string)
- Goal: strings (& particles) without string (worldsheet) <- new geometries

Stringy canonical forms [Arkani-Hamed, SH, Lam, 2019, 2020...]

vast generalizations of (open-)string amplitudes

$$\mathbf{I}_{n}(\{s\}) = (\alpha')^{n-3} \int_{\mathcal{M}_{0,n}^{+}} \frac{d^{n-3}z}{z_{1,2}\cdots z_{n,1}} \prod_{a < b} (z_{a,b})^{\alpha' s_{a,b}}$$

positive parametrization, e.g. $z_3 = 1 + x_2$, $z_4 = 1 + x_2 + x_3$, ..., $z_{n-1} = 1 + x_2 + \dots + x_{n-2} \implies$

integral w. positive polynomials:

$$\mathscr{F}_{\{p\}}(\mathbf{X},\{c\}) = \alpha^{\prime d} \int_{\mathbb{R}^d_{>0}} \prod_i^d \frac{dx_i}{x_i} x_i^{\alpha' X_i} \prod_I p_I(\mathbf{X})^{-\alpha' c_I}$$

long history ("Euler-Mellin"...) $\rightarrow d^d \mathbf{X} \mathscr{F}(\mathbf{X})$ a diff. form exhibits geometries & remarkable properties

- leading order ($\alpha' \rightarrow 0$), residues on "massless poles" (+ convergence): controlled by polytope P
- "stringy" properties: meromorphic with "massive poles", exponential UV softness, "channel duality"
- scattering (saddle-point) equations & twisted (co-)homology
- dual u variables, tropical compactifications, (complex) closed-stringy integrals ...

Newton polytopes

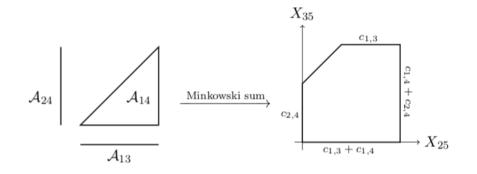
 $\mathbf{N}[1+3xy^2+xy^4+5x^3y+2x^3y^4+x^4y^2]$

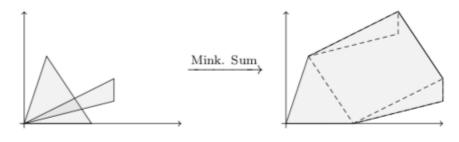
single polynomial:
$$\mathscr{I}_{p}(\mathbf{X}, c) = \alpha'^{d} \int_{0}^{\infty} \prod_{i=1}^{d} \frac{dx_{i}}{x_{i}} x_{i}^{\alpha' X_{i}} p(\mathbf{x})^{-\alpha' c}$$

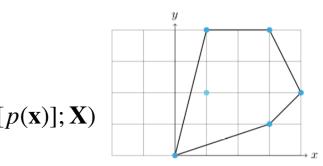
converges iff **X** is inside Newton polytope $c \mathbf{N}(p)$, $\lim_{\alpha' \to 0} \mathscr{I}_{p}(\mathbf{X}, c) = \underline{\Omega}(c \mathbf{N}[$

(also see [Nilsson, Passare; Berkesch et al])

trivial to gen. to
$$\mathscr{F}_{\{p\}}(\mathbf{X}, \{c\}) = \alpha^{\prime d} \int_{\mathbb{R}^d_{>0}} \prod_{i=1}^d \frac{dx_i}{x_i} x_i^{\alpha' X_i} \prod_{I=1}^m p_I(\mathbf{X})^{-\alpha' c_I}$$


converges iff X is inside Minkowski sum $\mathscr{P} := \sum_{I} c_{I} N[p_{I}(\mathbf{x})]$


 $\lim_{\alpha' \to 0} d^d \mathbf{X} \mathscr{F}_{\{p\}}(\mathbf{X}, \{c\}) = \Omega(\mathscr{P}; \mathbf{X}) \quad \boldsymbol{\alpha'}\text{-deformations of canonical form of any (rational) polytope}$


e.g. ABHY = Minkowski sum of simplices, one for each $c_{i,j} > 0$

$$\mathbf{I}_n = \mathscr{I}_{\mathscr{A}_{n-3}} = \int \prod_{i=2}^{n-2} \frac{dy_i}{y_i} y_i^{\alpha' X_{i,n}} \prod_{1 \le i < j-1 < n} p_{ij}(\mathbf{y})^{-\alpha' c_{i,j}}$$

re-discover open-string integrals & moduli space from ABHY!

Applications of stringy integrals

(1). stringy integral for gen. associahedra $\mathscr{P}(\Phi)$ of finite type: $\mathscr{I}_{\Phi}(\{S\}) = (\alpha')^d \int_{\mathbf{A}(\Phi)_+/T} (\omega/T) \prod_{\gamma \in \Gamma} x_{\gamma}^{\alpha' S_{\gamma}}$

leading order \rightarrow ABHY cluster polytopes: $\lim_{\alpha' \to 0} d^d \mathbf{X} \mathscr{F}_{\Phi}(\mathbf{X}, \{c\}) = \Omega(\mathscr{P}(\Phi^{\lor}, c); \mathbf{X})$

ABCD: α' -extension of ϕ^3 amps w. factorization at finite α' e.g. $\mathscr{I}_{D_n} \to \mathscr{I}_{A_m} \times \mathscr{I}_{D_{n-m-1}}, \quad \mathscr{I}_{A_{n-3}} \times \mathscr{I}_{A_1} \times \mathscr{I}_{A_1}, \quad \mathscr{I}_{A_{n-1}}$

(2). stringy integral over
$$G_{+}(k,n)/T$$
: $\mathscr{F}_{k,n}(\{S\}) := (\alpha')^d \int_{G_{+}(k,n)/T} (\omega_{k,n}/T) \prod_I \Delta_I^{\alpha' s_I} \quad d := (k-1)(n-k-1)$

 $D = \binom{n}{k} - n$ higher-k gen. of string integrals ($\mathscr{M}_{0,n}^+ \sim G_+(2,n)/T$): k=4 -> symbol alphabet in N=4 SYM

 $\mathscr{P}_{k,n} = \sum_{I} S_{I} N[\Delta_{I}]$ [Arkani-Hamed, Lam, Spradlin 20] \leftrightarrow tropical $G_{+}(k, n)$ [Speyer, Williams; Cachazo et al; Drummond et al]

(3). Feynman integrals (parametric form) -> A-hypergeometric functions, GKZ system... [work in progress] leading UV/IR behavior given by Symanzik polytopes (tropical geometry) [Arkani-Hamed, Hillman, Mizera 22]

Summary & outlook

Scattering Amplitudes: one of the most exciting frontiers of hep-th rich structures/applications to formal QFT, gravity, strings, math etc.

New Picture: general massless S-matrix via punctured Riemann spheres; higher-genus for loops. A (weak-weak) QFT/String duality for S-matrix?

New Relations: gluons, pions, gravitons ... double copy for quantum gravity Double copy beyond amps: classical solutions, gravity waves,

New Maths: geometries in kinematic space & amps as differential forms "theory at infinity": geometry/combinatorics \rightarrow Lorentz inv. + unitarity

"Marble statues in the Forest beyond Quantum Mechanics & Spacetime" What will we see next?

Thank You!

Acknowledgement: pictures from N. Arkani-Hamed, Z. Bern, Y. Geyer, J. Trnka, G. Salvatori