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Introduction and previous works

• Topological strings: A N = (2,2) supersymmetric non-linear sigma

model from world sheet Σ to target space X.

Φi : Σ→ X

Topological string theory is the most interesting and free of world sheet

anomaly, when the target space X is a Calabi-Yau 3-fold.

• There are two types of topological twisting: A-model and B-model.

We are interested in the topological string partition function

Z = exp(
∞∑
g=0

λ2g−2F (g)(ti))

where ti are Kahler moduli in the case of A-model, and complex struc-

ture moduli in the case of B-model. The A-model topological string

free energy counts holomorphic curves, has rigorous mathematical def-

inition as Gromov-Witten invariants.



• Mirror symmetry relates topological A-model on manifold M to topo-

logical B-model on its mirror manifold W . Some very difficult math-

ematical problems of enumerative geometry can be easily solved by

topological B-model methods.



• A long standing problem: How to solve topological strings on compact
Calabi-Yau three-folds? The non-compact Calabi-Yau three-folds are
basically described by a Riemann surface, so the geometric structure
is simpler than the compact case. Many methods work only on the
non-compact case.

• The recent works with S. Katz and A. Klemm propose that the topo-
logical string partition functions on compact elliptic Calabi-Yau three-
folds can be written in terms of Weak Jacobi Forms. This provides
topological invariants for fixed base degree, for all fiber degrees and all
genera.

• Combined with the B-model method of holomorphic anomaly equa-
tion and boundary conditions, we can solve topological strings to very
high base degree (for all fiber degrees and all genera), or very high
genus (for all base and fiber degrees). MH, S. Katz and A. Klemm,
arXiv:1501.04891. See A. Klemm’s talk.

• In this talk I will focus on a particular aspect of the works, the derivation
of modular anomaly equation.



A quick introduction to modular forms

• (Holomorphic) modular forms f(τ), Im(τ) > 0 of weight k satisfies

f(
aτ + b

cτ + d
) = (cτ + d)kf(τ), ∀

(
a b
c d

)
∈ SL(2; Z)

• Since f(τ + 1) = f(τ), we have the Fourier expansion

f(τ) =
∞∑
n=0

anq
n, q = e2πiτ

• Eisenstein series Gk(τ) = −Bk2kEk(τ),

Gk(τ) =
(k − 1)!

2(2πi)k
∑
m,n

1

(mτ + n)k
= −

Bk
2k

+
∞∑
n=1

σk−1(n)qn, (1)

where the first sum is over all integer pairs (m,n) 6= (0,0), Bk is the

kth Bernoulli number and σk(n) =
∑
d|n d

k is the sum of kth power of

positive divisors of n. It is a modular form of weight k for even k > 2.



• Theorem: Modular forms are homogenous polynomials of the Eisen-

stein series E4 and E6.

• We immediately have some nice identities, e.g.

E4(τ)2 = E8(τ), E4(τ)E6(τ) = E10(τ), · · · . (2)

The expansion of the first one is

n−1∑
m=1

σ3(m)σ3(n−m) =
σ7(n)− σ3(n)

120
. (3)

These identities of “sum of positive divisors function” can be obtained

in number theory, though not so easy.

• The second Eisenstein series E2(τ) transforms with a shift under S-

duality, and can be made modular by adding an anti-holomorphic piece

E2(−
1

τ
) = τ2(E2(τ) +

12

2πiτ
), Ê2(τ, τ̄) = E2(τ)−

6i

π(τ − τ̄)



• The homogenous polynomials of E2, E4 and E6 are known as quasi-

modular forms (Zagier). The modular anomaly refers to the partial

derivative with respect to E2.

• The graded ring of quasi-modular forms is closed under derivative with

respect to τ , due to the Ramanujan identities

1

2πi

d

dτ
E2 =

1

12
(E2

2 − E4),

1

2πi

d

dτ
E4 =

1

3
(E2E4 − E6),

1

2πi

d

dτ
E6 =

1

2
(E2E6 − E2

4). (4)

• Equivalently, we can defined the Maass derivative Dτ = ∂τ + k
τ−τ̄ , where

k the modular weight of the object acted on by Dτ . Then the usual

Leibniz Rule is valid Dτ(f1f2) = f1Dτf2 + f2Dτf1, and the Ramanujan

identities are invariant by replacing

∂τ → Dτ , E2(τ)→ Ê2(τ, τ̄) (5)



A useful formula

• Suppose Pk is a rational function of quasi-modular forms, with modular

weight k, then we have the formula

∂E2
∂tPk = ∂t∂E2

Pk +
k

12
Pk, (6)

where we use the notation t = log(q) = 2πiτ .

• The derivation uses the Maass derivative and replace E2 with Ê2. The

derivative with respect to E2 can be related to the anti-holomorphic

derivative

∂̄τ̄ = (∂̄τ̄ Ê2)∂Ê2
=

6

πi(τ − τ̄)2
∂Ê2

(7)

We can compute the derivative

∂̄τ̄DτPk = (∂τ +
k

(τ − τ̄)
)∂̄τ̄Pk + (∂̄τ̄

k

(τ − τ̄)
)Pk (8)

Taking the holomorphic limit and cancel out the infinitesimal factor

(τ − τ̄)−2 we arrive at the formula (6).



Modular anomaly: genus zero case

• A simpler non-compact case: half K3 model. The geometry of the half

K3 surface can be constructed by blowing up nine points on P2. For

simplicity we consider the “massless limit” with only the a base and a

fiber class.

• By string dualities, the topological string amplitudes on the half K3

Calabi-Yau threefold are equivalent to the partition function of the six-

dimensional non-critical E-string compactified on a circle. The winding

and momentum numbers of the E-string on the compactified circle

correspond to the wrapping numbers nb and ne on the base and elliptic

fiber in the second homology classes in the half K3 surface.

• The modular anomaly equation is first discovered in J. A. Minahan, D.

Nemeschansky and N. P. Warner, hep-th/9707149; J. A. Minahan, D.

Nemeschansky, C. Vafa and N. P. Warner, hep- th/9802168.



• The genus zero amplitude F (0) can be computed by Picard-Fuchs dif-

ferential equations L1f(ze, zb) = L2f(ze, zb) = 0 with

L1 = θe(θe − θb)− 12ze(6θe + 5)(6θe + 1),

L2 = [θb − zb(θb − θe)]θb, (9)

where zb and ze are complex structure moduli of the base and the

elliptic fiber, and θi := zi
∂
∂zi

. We follow the approach in A. Klemm, J.

Manschot and T. Wotschke, arXiv:1205.1795.

• We solve the equations around the large volume point correspond to

(ze, zb) = (0,0). The power series and single logarithmic solutions are

w0(ze) = 1 + 60ze + 13860z2
e +O(z3

e ),

we(ze) = w0 log(ze) + 312ze + 77652z2
e +O(z3

e ), (10)

wb(ze, zb) = w0 log(zb) + 60ze + 20790z2
e − 60zezb +O(z3)

The mirror maps are defined as ti = wi
w0
∼ log(zi).



• Define the modular parameter τ by the implicit relation

J(τ) =
1728E3

4

E3
4 − E

2
6

=
1

ze(1− 432ze)
. (11)

Using the Ramanujan identities, we can show that E4(τ)
1
4 and τE4(τ)

1
4

are solutions to the differential equations. So the mirror map is simply
te = 2πiτ , and we have w0(ze) = E4(τ)

1
4.

• The genus zero amplitude F (0)(te, tb) is defined by the fact that ∂tbF
(0)

is a double logarithmic solution of the differential equations. After
some analysis, it can be shown that the instanton part can be written
as quasi-modular forms

P (0) ≡ F (0)
inst =

∞∑
n=1

e
nte
2

η12n
P6n−2(E2, E4, E6)entb, (12)

and satisfy a recursive modular anomaly equation

∂E2
P6n−2 = −

1

24

n−1∑
k=1

k(n− k)P6k−2P6(n−k)−2 (13)

I am very brief here and shall give more details for a compact case.



• The modular anomaly equation is also derived by Seiberg-Witten curve

in J. A. Minahan, D. Nemeschansky and N. P. Warner, hep-th/9707149.

However, the above approach by A. Klemm, J. Manschot and T.

Wotschke, arXiv:1205.1795 can easily see the quasi-modularity (12).

• The modular anomaly equation is generalized to higher genus in S.

Hosono, M. H. Saito and A. Takahashi, [arXiv:hep-th/9901151].

The generalization for general compact elliptic Calabi-Yau manifolds is

proposed in A. Klemm, J. Manschot and T. Wotschke, arXiv:1205.1795;

M. Alim and E. Scheidegger, arXiv:1205.1784.

The refinement (for half K3 model) is proposed in M. -x. Huang, A.

Klemm and M. Poretschkin, arXiv:1308.0619.

• The weak Jacobi Form satisfies the modular anomaly equation with

the elliptic parameter identified with genus expansion parameter, and

provide a completion of the “modular ambiguity”.



• The vanishings of Gopakumar-Vafa invariants. For genus zero we have

the expansion

P (0) =
∞∑

m=1

∑
ne,nb

nne,nb

m3
e−m(nete+nbtb), (14)

where nne,nb are integer genus zero Gopakumar-Vafa invariants. Geo-

metric arguments state that nne,nb = 0 for nb > ne and nb > 1. These

vanishing conditions completely redundantly fix the modular ambiguity.



• How to derive the vanishing conditions from differential equation? This

seems much more difficult than deriving the modular anomaly equation.

C. Vafa proposed the problem to Don Zagier soon after their paper

appeared in 1998. Zagier stated he had a proof in a workshop that I

attended in 2013.



• The compact case: our main example is elliptic fibration over P2. The

Picard-Fuchs operators are

L1 = θe(θe − 3θb)− 12ze(6θe + 1)(6θe + 5),

L2 = θ3
b + zb

2∏
i=0

(3θb − θe + i). (15)

• The main difference with the non-compact case in e.g. (9): There is

no solution dependent only on fiber parameter ze. So the mirror map

for elliptic fiber depends on both ze and zb.

• To proceed, we define an auxiliary variable q̃ = et̃ = e2πiτ̃ , which is

related to ze by

J(τ̃) =
1

ze(1− 432ze)
, (16)



• We can write the ansatz for the zb power series solution to the equations

(15)

w =
∞∑
n=0

cn(ze)z
n
b . (17)

We know in the local zb → 0 limit, there are two linearly independent

solutions, which can be written as E4(τ̃)
1
4 and t̃E4(τ̃)

1
4, in terms of the

modular parameter defined in (16). So the initial function c0(ze) in the

expansion is E4(τ̃)
1
4 or t̃E4(τ̃)

1
4.

• Plugging the ansatz, the first and second PF equations in (15) become

12ze(6θe + 1)(6θe + 5)cn(ze) = θe(θe − 3n)cn(ze),

cn+1(ze) =
1

(n+ 1)3

2∏
i=0

(θe − 3n− i)cn(ze) (18)

where θze = ze∂ze. We see that the second equation provides a recursion

relation to compute the higher order coefficients cn(ze).



• Furthermore, one can check that the two equations are consistent, i.e.
the cn+1 from recursion in the second equation also satisfies the first
equation for cn with by replacing n with n+ 1. The recursion implies

cn(ze) =
1

(n!)3

3n−1∏
k=0

(θze − k)c0(ze) (19)

• Using Ramanujan identities (4), one can show by induction

n−1∏
k=0

(θze − k)E4(q̃)
1
4 =

E4(q̃)
1
4

(E4(q̃)
3
2 + E6(q̃))n

(anE2(q̃) + bn),

n−1∏
k=0

(θze − k)[t̃E4(q̃)
1
4] =

E4(q̃)
1
4

(E4(q̃)
3
2 + E6(q̃))n

[
t̃(anE2(q̃) + bn) + 12an

]
.

where an and bn are modular forms of q̃ of weight 6n− 2 and 6n.

• We can compute the mirror map for elliptic fiber te = X1
X0

, where X0

and X1 are the solutions that start with E4(τ̃)
1
4 and t̃E4(τ̃)

1
4. We find

∂E2(q̃)(te − t̃)−1 =
1

12
. (20)



• As this becomes very technical, It is difficult to explain all the details

in a talk. Here I provide only the rough outline of the derivation. For

more details see the paper with S. Katz and A. Klemm.

• From the useful formula (6), we derive the relation between derivatives

∂E2(q̃)Pk(qe) = ∂E2(qe)Pk(qe) +
k

12
(te − t̃)Pk(qe), (21)

where Pk is a quasi-modular form of weight k.



• We will need to be careful when taking partial E2(qe) derivative, by

specifying the independent variables that are fixed. We can either keep

zb fixed or tb fixed. To avoid confusion, we use the notation of the

operator LE2
for this first case and reserve the notation ∂E2

only for

the second case, i.e.

LE2
f := ∂E2(qe)f(qe, zb), ∂E2

f := ∂E2(qe)f(qe, qb). (22)

Also the default argument of E2 is qe when omitted. The convention

in previous literature uses ∂E2
in our notation, while here we introduce

the LE2
as we shall see that it is more convenient for the derivation.

• We derive some useful formulas from differential equations

LE2
zb = 0, LE2

te = 0, (23)

LE2
ze = 0, LE2

w0 = 0, LE2
tb =

1

12
∂tbP

(0), (24)

where w0 is the power series solution to the Picard-Fuchs equation,

and P (0) ≡ P (0,0) is the generating function of non-zero base degree

instanton contributions in the prepotential.



• From the chain rule for computing derivatives and the last equation in

(24), we can relate these two derivatives

LE2
f = ∂E2

f + [∂tbf(te, tb)]LE2
(tb)

= ∂E2
f +

1

12
(∂tbf)(∂tbP

(0)), (25)

• Analyzing the double logarithmic solution and use (21), we derive the

modular anomaly equation

LE2(qe)∂tbP
(0) = 0. (26)

We convert to the ∂E2
notation, integrate once and we arrive at the

genus zero modular anomaly equation

∂E2
P (0) = −

1

24
(∂tbP

(0))2. (27)



Modular anomaly: higher genus

• We will also consider refined topological strings, which have two indices

F =
∞∑

n,g=0

F (n,g)(ti)(ε1 + ε2)2n(ε1ε2)g−1, (28)

where ε1, ε2 are gravi-photon field strength. The unrefined limit is

ε1 + ε2 = 0, while the Nekrasov-Shatashvilli limit is ε2 = 0. We use the

calligraphy to denote B-model amplitude so that the holomorphic limit

of w2n+2g−2
0 F(n,g) is F (n,g)

A−model.

• The refined holomorphic anomaly equation is proposed. The results for

non-compact toric geometry agree with the calculations from refined

topological vertex.

D. Krefl and J. Walcher, [arXiv:1007.0263];

M. x. Huang and A. Klemm, [arXiv:1009.1126]



• The genus one formulas are known in the literature

F(1,0) =
1

24
[log(∆1∆2)−

h1,1∑
i=1

ci log(zi)] + c0K,

F(0,1) =
1

2
(3 + h1,1 −

χ

12
)K +

1

2
log detG−1 −

1

12
log(∆1∆2)

−
1

24

h1,1∑
i=1

si log(zi), (29)

• The only modular anomaly comes from the determinant detG. We can

compute

LE2
F(1,0) = 0,

LE2
(F(0,1)) =

1

2
LE2

log(det(∂tαzβ)) =
1

2

∑
α,β

(∂zβtα)LE2
(∂tαzβ)

= −
1

24
∂2
tb
P (0), (30)

where we use the formula for LE2
(∂tαzβ) without providing the details

here.



• Taking into the classical contribution, we can write the modular anomaly

equation for the positive base degree contributions P (1,0) and P (0,1) as

LE2
P (1,0) = −

89

1728
∂tbP

(0), LE2
P (0,1) =

1

8
∂tbP

(0) −
1

24
∂2
tb
P (0).

The equation for P (0,1) agrees with previous literatures, while the equa-

tion for refined case P (1,0) is somewhat different.



• Higher genus g ≥ 2. The BCOV holomorphic anomaly comes from

boundaries of moduli space of string world sheet. M. Bershadsky, S.

Cecotti, H. Ooguri and C. Vafa, [arXiv:hep-th/9309140].

The refined holomorphic anomaly equation is

∂̄̄iF
(n,g) =

1

2
C̄
jk
ī

[DjDkF(n,g−1) + (
n∑

n1=0

g∑
g1=0

)′DjF(n1,g1)DkF(n−n1,g−g1)],

(31)

• We will derive the modular anomaly equation from holomorphic anomaly

equation. The topological string amplitude F(n,g) is a polynomial

of BCOV propagators Sij, Si, S, where the coefficients are rational

functions of complex structure modulus parameters. So we have the

anomaly

LE2
F(n,g) =

∂F(n,g)

∂Sij
(LE2

Sij) +
∂F(n,g)

∂Si
(LE2

Si) +
∂F(n,g)

∂S
(LE2

S). (32)

The partial derivatives ∂F(n,g)

∂Sij
, ∂F

(n,g)

∂Si
, ∂F

(n,g)

∂S are computed from (31).



• The BCOV propagators Sij, Si, S are defined by

∂̄̄iS
jk = C̄

jk
ī
, ∂̄̄iS

j = GīkS
jk, ∂̄̄i = GījS

j, (33)

where Gīj = ∂̄̄i∂jK is the special Kahler metric of the Calabi-Yau moduli

space. These equations can integrated and one fixes the holomorphic

ambiguities. M. Alim and J. D. Lange, [arXiv:0708.2886 ] Using the

integrated equations we compute the modular anomaly of BCOV prop-

agators

LE2
Sij = −

1

12w2
0

(∂tbzi)(∂tbzj), (34)

LE2
Si = −

1

12w2
0

(∂tbzi)(∂tb logw0), (35)

LE2
S = −

1

24w2
0

(∂tb logw0)2.. (36)



• After some lengthy calculations, we finally derive the refined modular

anomaly equations. For zero base degree we have

∂E2
P

(0,2)
0 = −

3

32
, ∂E2

P
(1,1)
0 =

89

1152
,

∂E2
P

(2,0)
0 = −

1

24
(

89

144
)2 = −

7921

497664
,

∂E2
P

(n,g)
0 = 0, for n+ g > 2. (37)

For positive base degree amplitudes, we have

LE2
P (n,g) = −

1

24
(

n∑
n1=0

g∑
g1=0

)′[∂tbP
(n1,g1)][∂tbP

(n−n1,g−g1)]

−
89

1728
∂tbP

(n−1,g) +
1

8
∂tbP

(n,g−1) −
1

24
∂2
tb
P (n,g−1).

• This agrees with previous literature for unrefined limit n = 0. We check

the topological invariants with geometric calculations. We see it is fine

for n = 1 but not valid for n ≥ 2.



Summary and Conclusion

• The derivations can be generalized to more models, e.g. elliptic fibra-

tions over Hirzebruch surfaces Fn. We propose similar formulas without

the detailed proof.

• There is an alternative derivation from Witten’s equation, which inter-

prets the topological string partition function as a wave function. See

A. Klemm’s talk.

• The refined holomorphic anomaly equation needs correction in the com-

pact case for n ≥ 2.

• We shall discover more structures (e.g. gap condition near conifold

point, weak Jacobi Form) in the topological string partition function,

enable the complete solution on a compact Calabi-Yau three-fold.



Thank You


