Solving Scattering Equations

Bo Feng

East Joint Workshop on Fields and Strings 2016, May
27-31, 2016, Hefei, China

Based on the work 1509.04483, 1604.07314, 1605.06501 and
unpublished results, with Rijun Huang, Junjie Rao, Yang-Hui He,
Ming-xing Luo, Chuan-Jie Zhu, Carlos Cardona, Humberto
Gomez,N. E. J. Bjerrum-Bohr, Jacob L. Bourijaily, Poul H.
Damgaard

Bo Feng Solving Scattering Equations



Bo Fen Solving Scattering Equations
[¢]



Part |: Backgrounds




In 2013, new formula for tree amplitudes of massless theories
has been proposed by Cachazo, He and Yuan:

_ [ {(IL, dz)
Ap = / #9(5)1,

This formula contains three parts. For the first part:

@ Integration variables are z;’s, i.e., locations of n external
legs in sphere.

@ The formula is invariant under the SL(2, C) transformation

az+b
zZ — cz1d"

@ The dw is nothing, but the gauge volume and can be
H d rd sd
written as dw = Z-Z7=
@ Dividing dw will reduce integration to (n — 3) variables, i.e.,

three locations can be fixed by SL(2, C) transformation.
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The second part (measure part) is universal

!/

Q&) = H5(5a) = ZjZjkZki H 6 (&a)

a a#i,j.k

@ Scattering equations are defined

Sab
Ea= =0, a=1,2,...n
@ ;Za—zb

@ Only (n— 3) of them are independent by SL(2, C)
symmetry

D E€a=0, Y Eaza=0, Y Ea75=0,
a a a
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@ (n— 3) integrations with (n — 3) delta-functions, so the
integration becomes the sum over all solutions of
scattering equations

’
2 det (@) 22
zeSol
where det’(®) is the Jacobi coming from solve &,
08 [ 2 a#b
T 0z | ~Xoa¥ a=b’
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The third part, i.e., CHY-integrand Z(z), defines a particular
theory.

@ SL(2, C) invariance require that under the transformation,
n
(cz;i + d)*
z —F | Z(2) .

We will call Z having weight four.

@ To define proper CHY-integrand, let us define two building
blocks. The first one is
1

Yo(2) = , a€ Sy/Z
(2) Za(1)o(2) -+ Za(n—1)o(n) n/Zn

which has weight two.
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@ The second building block is
E(e, k,z) = (PI'V(k,¢,Z2))

where z; = z; — z; and the 2n x 2n matrix W is given by

kai(b €a€p b
a#b a#
Vap = { > 7& ) ‘Ua—s—n,b+n - { -

07 a:b 0, a:b

Kacp atb
Vainp = { o 7 (1)

—SUmczaVeinp, a=»b

and the reduced Pfaffian Pf'V = %Pﬂl}g with
1 < i < j < n, which has weight two.
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Having pieces with weight two, we can multiply them to get
weight four integrand:

@ Bi-adjoint ¢° scalar theory with ordering (a, 5):
I(z) = Ta(2)xp(2)

@ Partial ordered YM-theory

@ Gravity theory
I(z) = E(e, k, 2)E(€, k, 2)

@ Based on above two blocks, there are several
manipulations on them to get more theories.
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With above discussions, it is understandable that solving

scattering equations will be a crucial part of the whole
algorithm!

However, directly solving scattering equations is not an easy
task!

@ With proper transformation, we can change scattering
equations to polynomial equations of multiple variables

O=hm= >  kizs, 2<m<n-2,
SEA,|S|=m

where the sum is over all (n#'),m, subsets S of

A={1,2,...,n} with exactly m elements and ks = >, s kb
and zs = [[pes 2b-
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@ After gauge fixing, they define a zero-dimensional ideal in
the polynomial ring in n — 3 variables. Then, using the
standard Bézout’s theorem, the number of points in this
ideal (solutions of the scattering equation) is (n — 3)!.

@ One can see this fact by noticing that after using the
elimination theorem, it is reduced to a polynomial of a
single variables degree ]"[f’,,‘:?’1 deg(hm) = (n— 3)! with
deg(?)m) =m.

@ With this picture, it is easy to see that when n > 6, solving
it analytically is almost impossible!

Bo Feng Solving Scattering Equations



Furthermore, there are a few facts which are not so obvious by
above direct method:

@ Although each solution is very complicated, when we sum
them together, we do get rational function of k; - k;.

@ Different CHY-integrands may give the same final answer.
How to understand it? It is equivalent to determine when a
CHY-integrand gives zero contribution.

@ How to see the pole structure from CHY-integrand?

In this talk, we will concentrate on solving scattering equations
and understanding above problems.
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Part |[I: Companion Matrix




The first important observation is that what we really want is not
individual solutions, but the sum over solutions | Thus if there is
an algorithm to make the sum without solving, it will be perfect.
One of such algorithms is the companion matrix

The key is to realize that polynomial scattering equations have
define anideainring R = C|z4, ..., Z,_3]. Thus we have
transformed the problem to computational algebraic geometry!
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The mathematical statement is following:

@ Suppose a Grobner basis for / has been found for some
appropriate monomial ordering and B is an associated
monomial basis for /, which can be seen as a vector space
of dimension d. Then the multiplication map by the
coordinate variable x;

R/l — R/ )
T f —xf (3)

is an endomorphism of quotient rings.

@ In the basis B of monomials, this is a d x d matrix and is
called a companion matrix

Bo Feng Solving Scattering Equations



@ Clearly, { T;} all mutually commute and thus can be
simultaneously diagonalized.

@ We have the following

Theorem (Stickelberger)

The complex roots z; of | are the vectors of simultaneous
eigenvalues of the companion matrices Ti— .., i.e., the
corresponding zero dimensional variety consists of the points:

V() ={(M,.--,An) €C": IV € CVi: Tiv = \v} .
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In particular, we have the following important consequence:
Our desired quantity

r(zj) = Tr[r (Tq,..., Th)]
j=1

where the evaluation of the rational function r on the matrices
T; is without ambiguity since they mutually commute.

We remark that because r is rational, whenever the companion
matrices appear in the denominator, they are to be understood
as the inverse matrix.
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Example:

@ Theidea is
l'=(xy—z,yz—x,zx —y) C R=C|x,y, 2] .
@ The expressions needed to be evaluated are:

3x3y + xyz

_ 3 _
p(vavz) = 3x y+Xxyz, Q(X,y,Z) - 2Xy2+4z2+1 '

@ In the lex ordering of x < y < z, the Grébner basis and the
monomial basis are, respectively,

GB(l) = <23—z,yzz—y,y2—22,x—yz>
B = {1,y,yz,z,7%}.
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@ Therefore, we have that, in the quotient ring R/,

x.B = {yZ,Z,Zz,y,yZ}, y'B:{y’ZzazvyZay}’
zB = {z,yz,y,2% 2}

so that
00 1 0 o0 01 0 0 0
T 00 0 1 0 T 000 0 0 1
= 00 0 0 1 = o o o 1 o
X o 1 00 0 | Y oo 1 0 0o |’
00 1 0 0 01 0 0 0
00 0 1 0
T 00 1 0 0
= 01 0 0 0
z 00 0 0 1
00 0 1 0
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Thus

= Tr <3T)§Ty+ TxTyTz> =4,

20
Q = Tr(@TT + LT, T)RLTE +4T2+0) ") = 22
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Remarks:

@ We do not need to solve the equations

@ At every step, it is rational expression

@ Finding the companion matrix is not so easy
@ ltis not clear how the pole appear

@ Similar algebraic approach (Bezoutian matrix method) has
been proposed
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Part lll: Feynman rule
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@ It is obviously desirable to have a method giving wanted
result without much calculations

@ A first hint is given by the conjectured bi-adjoint ¢° theory.

@ ltis observed for CHY-integrand Z(z) = X,(2)%3, the
result is given by sum of Feynman diagrams consistent
with two color orderings
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1 ; _
Example (12345)(13245) with (ay...am) = Za,a,---Zapa

5 1 3 4 5
1 3 4 3 2 1
5 4 5 1 3 2 4 5
4 2 3 1
1 1
$23845 $23S51
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Above conjecture has motivated following careful analysis:

@ Pole s4 with subset A appears when corresponding Zjca’s
approach each other

@ Under this limit, with rescaling z;c 4 = €X;, the integration
can be split to

%dGEX(A)1 fdzigA%dXieA-m

@ For simple case x(A) = 0, the integration of de can be
carried out and the expression is reduce to

(jq{ dZigA...> S1A (74 dX,'eA...>

which has a very clear picture of Feynman diagram
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Above analysis leads to following important observation:

@ There is an index characterizing the degree of pole for
given subset A

X(A) := LA - 2(|A] - 1)

LL[A] be the number ( more accurately it is the difference of
number between solid and dashed lines) of lines

connecting these nodes inside A and |A| is the number of
nodes.

@ It has nonzero contribution when and only when x(A) > 0
and the pole will be

1

X(A)+1
Sa
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The integration algorithm:

@ Find all subsets A with x(A) >0

@ compatible condition for two subsets Ay, Ao: they are
compatible if one subset is completely contained inside
another subset or the intersection of two subsets is empty.

@ Find all maximum compatible combinations, i.e., the
combination of subsets with largest number such that each
pair in the combination is compatible. For each maximum
combination with m subsets, it gives nhonzero contribution
when and only when m = n — 3.
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@ Each combination giving nonzero contribution will
correspond a (generalized) Feynman diagram with only
cubic vertexes

@ Now the key is how to read out expressions of Feynman
diagrams?

@ For simple pole, the rule is nothing, but the scalar
propagator SlA!
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Example of 6-point

(1.2, {23}, {45, {123} 5 4 5 4

{1,24+ {45 +{1,23 {23 +{45 +{1,23}

1 1
$128123545 $235123545
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What is the Feynman rule for higher order poles?

@ Key: The derivative property of residue of higher order pole
makes it quasi-local, i.e., it depends not only the total
momentum flow through the propagator, but also
momentum configuration at the four corners.

@ Simple pole is completely local.

Bo Feng Solving Scattering Equations



Feynman rule for single double pole:

2P4Pg + 2PgP
R/[Pa, Pg, P, Pp] = =~ 022 CACH
SaB
A B
A B
D C C
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Example: Pole subsets {1,2,3},{1,2},{2,3},{4,5},{5,6}

2 1.2 3 1.2 3 1.2 3 1.2 3
1 3
6 4
6 54 654 65 4 65 4
2P12P45 + 2P3Ps i 2P12P4 + 2P3Pse
252,,512545 252,,512S56

n 2P1P4s5 + 223Ps . 2P1P4 + 223 P56
231223823 S45 231223 523556
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Feynman rule for single triple pole

RilPa. Ps. Pe. Pp] = (ZPA”j)éQ”APD)
SaB
(2PBPC)(2PBPD) + (2PCPA)(2PCPB) + (2PDPA)(2PDPB)
4555
(P4 P + (P4 PRE _2(Ph+ PRFS + P3)
4535 9 4Sp .

—0

D C Pp Pc
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Pole subsets
{1,2},{3,4},{5,6},{3,4,5},{3,4,6},{3,5,6},{4,5,6}

1 2 1 2
152
6 3
4

6 5 4 3 6 5 4 3
1 | I 1 |
56 4 3 6 5 4 3 6 5 3 4
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_ S15 523515 S24S515 1 S SieSes
S2)S34S56  S1pS34S56  S1pS34S56  SipSs6  SipS3aSse  S3,S34Sse
S16524 513523 S16526 515525 S14524

3?2 534556 3132 S565456 5132 5345345 3?2 5345346 3?2 S56S356
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Feynman rule for duplex-double pole:

Ru[Pa, P, Pe, Pc, Pp]
(2PaPp)(2PgPc) — (2PaPc)(2PgPp)

2 o2
SaBSco
_ (PE)(2PAPD + 2PBPC — 2PAPC — 2PBPD)
45355%p .
A B Pa Ps
E E

D Cc Po Pc
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Feynman rule for triplex-double pole:

P1 P2 Ps pPs  Ps3 P4
P3 P1 Ps
P4 P2 Pe
1
2 Pe ps  Pa Ps P2 P
6 3 P1 p2 Pa Pg
5 4
Pe Pz Pe Pc
Ps P4 Pe Po
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Part IV: Cross Ratio
|dentities




@ Although Feynman rule method is very convenient,
deriving rule for higher order poles is not systematic. A
systematic way is to use cross ratio identities.

@ With a little algebra, scattering equations can be rewritten
as
1=_ Sab ZagZbp
Saq ZapZ
bragp a9 “abcap

@ Let us use it for 4-point example

I B 1 S13 Z12234\ _  S13 1
ha = & ([——"T ) =——"

2 2
23,20323, 241\ S12 Z13Z24 S12 \ 2§,21325, 204
S13 1
S12 512
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Now we see the systematic algorithm:

@ Constructing the cross ratio identities for arbitrary pole

—SA=—83= Z Z S,'jszzjq

ZjiZ,
i€S/{p} jeS/{qy P9

@ Each multiplication of the identity will reduce the power of
pole by one. lterating enough times to reach simple pole.
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Monodromy relation:
@ For color ordered Yang-Mills amplitude, there are various
relations, such as KK-relation and BCJ-relation
@ KK-relation:

An(1a{a}an7 {/8}) = (_1)”[3 Z An(1707 n) .
c€OP({a}{B7})
where sum is over partial ordering.
@ BCJ-relation:

An(1,2,{a},3,{8}) = Y  A:(1,2,3,0)F,

o€ POP
a={4,5,..,m}
B={m+1,m+2 .. n}
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@ These two relations can be understood in string theory as
the real and imaginary parts of monodromy relation

@ BCJ relation can be reduced to following fundamental BCJ
relation

k
0 = 57A(1284..n) + .. + (O _ s21)A(13..k2(k + 1)...n)
i=1

ng, (13...k2(k + 1)...n)
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@ It is amazing to notice that if we exchange
A(12..(n—1)n) = (12..(n—1)n) = 213234245._1.2(%1)"41,
similar BCJ-relation holds

k

0 = sx(1234..n) + ...+ (D s21)(13..k2(k + 1)...n)
i=1

n—1
+o+ (O s2i)(18..k2(k +1)...n)

i=1

if zi’s are solutions of scattering equations.
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The simple proof using scattering equations:

@ After removing same factors, this identity becomes

Zk(k+1)
0=1s + )— .
(2 S0 20

z z
par e k2Z2(k+1)

@ Collecting coefficients of each s,; and simplifying we get

@ Above equation can be changed to

ZjnZ12

n—1
0=2551+ Soj
jz_; ij2Z1n

which is nothing, but the cross ratio identity we have
discussed.
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Example: ——1—— = (123456)_,—,—- having three
212234 256223245261 12234256

double poles. To use the monodromy identity, we need to

expand (123456) by others without pole s12, S34, S56. One of

such expansion is

—(S21 + 8, —(S25 + S26)(Sa3 + S —(s56 + S
(123456) — (( (S21 + S23) N (S25 + S26)(S43 42)) (Ss56 + S54)
S12 S12534 S56

So5 + So6)(S4g + S Sp6(S43 + S
, (825 + 526)(5us 41)) (132546) — 26 (S43 45)(135426)
S12534 521534
(s21 + 8 — (505 + Sog)(Sa3 + S, S53 + S Sp6(S41 + S,
. (( 21 23) (S25 + S26)(S43 42)) (53 + S51) 4 26 (Sa1 4s)> (135246)
S12534 S56 521534
Sp5 + Spg)S. S56 + S 265 Sp5 + S26)S41 S
. ( 25 + Sp6)S41 (—)(Ss6 + Ss2) 4 S26541 ) (135264) + (S25 + S26)541 Ss4 554 (132645)
S12534 Ss56 521534 $12534 Ss56
(821 + s So5 + S06)(S43 + S s So5 + S26)S41 (51 + S
N ( 21 + Sp3) | —(So5 + Sp6)(Sa3 42)> 551 (153248) + (25 + S26)541 (Ss1 54)(153264)
512534 S56 $12534 Ss56
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Remarks:
@ Using the cross ratio identity we may give a proof of
Feynman rules

@ Having fast and analytic algorithm to write results for any
CHY-integrands will open up a way to understand
CHY-construction further
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Thanks a lot for listening!!!




