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Part I: Backgrounds
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In 2013, new formula for tree amplitudes of massless theories
has been proposed by Cachazo, He and Yuan:

An =

∫ (∏n
i=1 dzi

)
dω

Ω(E)I,

[ Freddy Cachazo, Song He, Ellis Ye Yuan , 2013, 2014]
This formula contains three parts. For the first part:

Integration variables are zi ’s, i.e., locations of n external
legs in sphere.
The formula is invariant under the SL(2,C) transformation
z → az+b

cz+d .
The dω is nothing, but the gauge volume and can be
written as dω = dzr dzsdzt

zrszst ztr
.

Dividing dω will reduce integration to (n − 3) variables, i.e.,
three locations can be fixed by SL(2,C) transformation.
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The second part (measure part) is universal

Ω(E) ≡
′∏
a

δ (Ea) = zijzjkzki
∏

a 6=i,j,k

δ (Ea)

Scattering equations are defined

Ea ≡
∑
b 6=a

sab

za − zb
= 0, a = 1,2, ...,n

Only (n − 3) of them are independent by SL(2,C)
symmetry∑

a

Ea = 0,
∑

a

Eaza = 0,
∑

a

Eaz2
a = 0,
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(n − 3) integrations with (n − 3) delta-functions, so the
integration becomes the sum over all solutions of
scattering equations∑

z∈Sol

1
det′(Φ)

I(z)

where det′(Φ) is the Jacobi coming from solve Ea

Φab =
∂Ea

∂zb
=

{ sab
z2

ab
a 6= b

−
∑

c 6=a
sac
z2

ac
a = b

,
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The third part, i.e., CHY-integrand I(z), defines a particular
theory.

SL(2,C) invariance require that under the transformation,

I(z)→

(
n∏

i=1

(czi + d)4

(ad − bc)2

)
I(z) .

We will call I having weight four.
To define proper CHY-integrand, let us define two building
blocks. The first one is

Σα(z) =
1

zα(1)α(2)...zα(n−1)α(n)
, α ∈ Sn/Zn

which has weight two.
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The second building block is

E(ε, k , z) = (Pf′Ψ(k , ε, z))

where zij ≡ zi − zj and the 2n × 2n matrix Ψ is given by

Ψab =

{
kak̇b
zab

, a 6= b
0, a = b

, Ψa+n,b+n =

{ εa·εb
zab

, a 6= b
0, a = b

Ψa+n,b =

{
ka·εb
zab

, a 6= b
−sumc 6=aΨc+n,b, a = b

(1)

and the reduced Pfaffian Pf′Ψ ≡ (−)i+j

zij
PfΨij

ij with
1 ≤ i < j ≤ n, which has weight two.
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Having pieces with weight two, we can multiply them to get
weight four integrand:

Bi-adjoint φ3 scalar theory with ordering (α, β):

I(z) = Σα(z)Σb(z)

Partial ordered YM-theory

I(z) = Σα(z)E(ε, k , z)

Gravity theory

I(z) = E(ε, k , z)E(ε′, k , z)

Based on above two blocks, there are several
manipulations on them to get more theories.

[ Freddy Cachazo, Song He, Ellis Ye Yuan , 2014]
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With above discussions, it is understandable that solving
scattering equations will be a crucial part of the whole
algorithm!
However, directly solving scattering equations is not an easy
task!

With proper transformation, we can change scattering
equations to polynomial equations of multiple variables

0 = hm ≡
∑

S∈A,|S|=m

k2
SzS , 2 ≤ m ≤ n − 2 ,

where the sum is over all n!
(n−m)!m! subsets S of

A = {1,2, ...,n} with exactly m elements and kS =
∑

b∈S kb
and zS =

∏
b∈S zb.

[ Dolan, Goddard, 2014]
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After gauge fixing, they define a zero-dimensional ideal in
the polynomial ring in n − 3 variables. Then, using the
standard Bézout’s theorem, the number of points in this
ideal (solutions of the scattering equation) is (n − 3)!.

One can see this fact by noticing that after using the
elimination theorem, it is reduced to a polynomial of a
single variables degree

∏n−3
m=1 deg(h̃m) = (n − 3)! with

deg(h̃m) = m.

With this picture, it is easy to see that when n ≥ 6, solving
it analytically is almost impossible!
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Furthermore, there are a few facts which are not so obvious by
above direct method:

Although each solution is very complicated, when we sum
them together, we do get rational function of ki · kj .
Different CHY-integrands may give the same final answer.
How to understand it? It is equivalent to determine when a
CHY-integrand gives zero contribution.
How to see the pole structure from CHY-integrand?

In this talk, we will concentrate on solving scattering equations
and understanding above problems.
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Part II: Companion Matrix
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The first important observation is that what we really want is not
individual solutions, but the sum over solutions ! Thus if there is
an algorithm to make the sum without solving, it will be perfect.
One of such algorithms is the companion matrix

[ B. Sturmfels, https://math.berkeley.edu/ bernd/cbms.pdf]

The key is to realize that polynomial scattering equations have
define an idea in ring R = C[z1, ..., zn−3]. Thus we have
transformed the problem to computational algebraic geometry!

Bo Feng Solving Scattering Equations



The mathematical statement is following:

Suppose a Gröbner basis for I has been found for some
appropriate monomial ordering and B is an associated
monomial basis for I, which can be seen as a vector space
of dimension d . Then the multiplication map by the
coordinate variable xi

R/I −→ R/I (2)
Ti : f −→ xi f (3)

is an endomorphism of quotient rings.
In the basis B of monomials, this is a d × d matrix and is
called a companion matrix
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Clearly, {Ti} all mutually commute and thus can be
simultaneously diagonalized.
We have the following

Theorem (Stickelberger)

The complex roots zi of I are the vectors of simultaneous
eigenvalues of the companion matrices Ti=1,...,n, i.e., the
corresponding zero dimensional variety consists of the points:

V(I) = {(λ1, . . . , λn) ∈ Cn : ∃v ∈ Cn∀i : Tiv = λiv} .
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In particular, we have the following important consequence:
Our desired quantity

N∑
j=1

r(zj) = Tr[r (T1, . . . ,Tn)]

where the evaluation of the rational function r on the matrices
Ti is without ambiguity since they mutually commute.

We remark that because r is rational, whenever the companion
matrices appear in the denominator, they are to be understood
as the inverse matrix.
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Example:

The idea is

I := 〈xy − z, yz − x , zx − y〉 ⊂ R = C[x , y , z] .

The expressions needed to be evaluated are:

p(x , y , z) = 3x3y + xyz, Q(x , y , z) =
3x3y + xyz

2xy2 + 4z2 + 1
.

In the lex ordering of x ≺ y ≺ z, the Gröbner basis and the
monomial basis are, respectively,

GB(I) =
〈

z3 − z, yz2 − y , y2 − z2, x − yz
〉

B = {1, y , yz, z, z2} .
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Therefore, we have that, in the quotient ring R/I,

x .B = {yz, z, z2, y , yz} , y .B = {y , z2, z, yz, y} ,
z.B = {z, yz, y , z2, z}

so that

Tx =

( 0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0

)
, Ty =

( 0 1 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0

)
,

Tz =

( 0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0

)
.
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Thus

p = Tr
(

3T 3
x Ty + TxTyTz

)
= 4,

Q = Tr
(

(3T 3
x Ty + TxTyTz)(2TxT 2

y + 4T 2
z + I)−1

)
=

20
21

Bo Feng Solving Scattering Equations



Remarks:

We do not need to solve the equations
At every step, it is rational expression
Finding the companion matrix is not so easy
It is not clear how the pole appear
Similar algebraic approach (Bezoutian matrix method) has
been proposed

[Sogaard and Zhang, 2015 ]
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Part III: Feynman rule
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It is obviously desirable to have a method giving wanted
result without much calculations
A first hint is given by the conjectured bi-adjoint φ3 theory. [
Freddy Cachazo, Song He, Ellis Ye Yuan , 2013]

It is observed for CHY-integrand I(z) = Σα(z)Σβ, the
result is given by sum of Feynman diagrams consistent
with two color orderings
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Example 1
(12345)(13245) with (a1...am) = za1a2 ...zama1

1

2

3

45

1
2

34

5

12

3 4 5

1

2

3

4 51

2

3

4

5

1
s23s45

1
s23s51
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Above conjecture has motivated following careful analysis:
[Baadsgaard, Bjerrum-Bohr, Bourjaily and Damgaard, 2015 ]

Pole sA with subset A appears when corresponding zi∈A’s
approach each other
Under this limit, with rescaling zi∈A = εxi , the integration
can be split to∮

dεεχ(A)−1
∮

dzi 6∈A

∮
dxi∈A....

For simple case χ(A) = 0, the integration of dε can be
carried out and the expression is reduce to(∮

dzi 6∈A...

)
1
sA

(∮
dxi∈A...

)
which has a very clear picture of Feynman diagram
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Above analysis leads to following important observation:

There is an index characterizing the degree of pole for
given subset A

χ(A) := L[A]− 2(|A| − 1)

L[A] be the number ( more accurately it is the difference of
number between solid and dashed lines) of lines
connecting these nodes inside A and |A| is the number of
nodes.
It has nonzero contribution when and only when χ(A) ≥ 0
and the pole will be

1

sχ(A)+1
A
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The integration algorithm:

Find all subsets A with χ(A) ≥ 0
compatible condition for two subsets A1,A2: they are
compatible if one subset is completely contained inside
another subset or the intersection of two subsets is empty.
Find all maximum compatible combinations, i.e., the
combination of subsets with largest number such that each
pair in the combination is compatible. For each maximum
combination with m subsets, it gives nonzero contribution
when and only when m = n − 3.
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Each combination giving nonzero contribution will
correspond a (generalized) Feynman diagram with only
cubic vertexes
Now the key is how to read out expressions of Feynman
diagrams?
For simple pole, the rule is nothing, but the scalar
propagator 1

sA
!
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Example of 6-point

1

2 3

4

56

{ 1, 2} , { 2, 3} , { 4, 5} , { 1, 2, 3}

2

3

5 4

6

1

5 4

6

1 32

{ 1, 2} + { 4, 5} + { 1, 2, 3} { 2, 3} + { 4, 5} + { 1, 2, 3}

1
s12s123s45

1
s23s123s45
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What is the Feynman rule for higher order poles?

Key: The derivative property of residue of higher order pole
makes it quasi-local, i.e., it depends not only the total
momentum flow through the propagator, but also
momentum configuration at the four corners.
Simple pole is completely local.
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Feynman rule for single double pole:

RI [PA,PB,PC ,PD] =
2PAPC + 2PBPD

2s2
AB

,

A B

CD

A B

CD
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Example: Pole subsets {1,2,3}, {1,2}, {2,3}, {4,5}, {5,6}

2

3

4

5

6

1

1 2 3

456

1 2 3

456

1 2 3

456

1 2 3

456

2p12p45 + 2p3p6

2s2
123s12s45

+
2p12p4 + 2p3p56

2s2
123s12s56

+
2p1p45 + 2p23p6

2s2
123s23s45

+
2p1p4 + 2p23p56

2s2
123s23s56
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Feynman rule for single triple pole

RII [PA,PB,PC ,PD] =
(2PAPC)(2PAPD)

4s3
AB

+

(2PBPC)(2PBPD) + (2PCPA)(2PCPB) + (2PDPA)(2PDPB)

4s3
AB

−
(P2

A − P2
B)2 + (P2

C − P2
D)2

4s3
AB

+
2
9

(P2
A + P2

B)(P2
C + P2

D)

4s3
AB

.

A B

CD

PA PB

PCPD
Bo Feng Solving Scattering Equations



Pole subsets
{1,2}, {3,4}, {5,6}, {3,4,5}, {3,4,6}, {3,5,6}, {4,5,6}

1 2

6 5 3 4

2

3

45

6

1
21

6 5 4 3

1 2

5 6 4 3

1 2

6 5 4 3

2

3

1

6 5 4
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− s15

s2
12s34s56

− s23s15

s3
12s34s56

− s24s15

s3
12s34s56

+
1

s2
12s56

− s16

s2
12s34s56

− s16s23

s3
12s34s56

− s16s24

s3
12s34s56

+
s13s23

s3
12s56s456

+
s16s26

s3
12s34s345

+
s15s25

s3
12s34s346

+
s14s24

s3
12s56s356

.
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Feynman rule for duplex-double pole:

RIII [PA,PB,PE ,PC ,PD]

=
(2PAPD)(2PBPC)− (2PAPC)(2PBPD)

s2
ABs2

CD

−
(P2

E )(2PAPD + 2PBPC − 2PAPC − 2PBPD)

4s2
ABs2

CD
.

A B

CD

E

PA PB

PCPD

PE
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Feynman rule for triplex-double pole:

p3 p4

p5
p6

p1p2

p1 p2

p3
p4

p5p6

p5 p6

p1
p2

p3p4

p1 p2

p3

p4p5

p6

PA PB

PC

PDPE

PF

1 2

3

45

6
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Part IV: Cross Ratio
Identities
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Although Feynman rule method is very convenient,
deriving rule for higher order poles is not systematic. A
systematic way is to use cross ratio identities.
With a little algebra, scattering equations can be rewritten
as

1 = −
∑

b 6=a,q,p

sab

saq

zaqzbp

zabzqp

Let us use it for 4-point example

I4;A =
1

z3
12z23z3

34z41

(
−s13

s12

z12z34

z13z24

)
= −s13

s12

(
1

z2
12z13z2

34z24

)

→ −s13

s12
× 1

s12
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Now we see the systematic algorithm:

Constructing the cross ratio identities for arbitrary pole

−sA = −sA =
∑

i∈S/{p}

∑
j∈S/{q}

sij
zipzjq

zijzpq

Each multiplication of the identity will reduce the power of
pole by one. Iterating enough times to reach simple pole.
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Monodromy relation:

For color ordered Yang-Mills amplitude, there are various
relations, such as KK-relation and BCJ-relation
KK-relation: [Kleiss, Kujif, 1989]

An(1, {α},n, {β}) = (−1)nβ
∑

σ∈OP({α},{βT })

An(1, σ,n) .

where sum is over partial ordering.
BCJ-relation: [Bern, Carraso, Johansson, 2008]

An(1,2, {α},3, {β}) =
∑

σi∈POP

An(1,2,3, σi)F ,

α = {4,5, ...,m}
β = {m + 1,m + 2, ...,n}
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These two relations can be understood in string theory as
the real and imaginary parts of monodromy relation

[ Bjerrum-Bohr, Damgaard, Vanhove, 2009]
[ Stieberger, 2009]

BCJ relation can be reduced to following fundamental BCJ
relation

0 = s21A(1234...n) + ...+ (
k∑

i=1

s2i)A(13...k2(k + 1)...n)

+...+ (
n−1∑
i=1

s2i)A(13...k2(k + 1)...n)
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It is amazing to notice that if we exchange
A(12...(n − 1)n)→ (12...(n − 1)n) ≡ 1

z13z34z45...z(n−1)nzn1
,

similar BCJ-relation holds

0 = s21(1234...n) + ...+ (
k∑

i=1

s2i)(13...k2(k + 1)...n)

+...+ (
n−1∑
i=1

s2i)(13...k2(k + 1)...n)

if zi ’s are solutions of scattering equations.
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The simple proof using scattering equations:

After removing same factors, this identity becomes

0 =

(
s21

z13

z12z23
+

n−1∑
k=3

(
k∑

i=1

s2i)
zk(k+1)

zk2z2(k+1)

)
.

Collecting coefficients of each s2i and simplifying we get

0 = s21
z1n

z12z2n
+

n−1∑
j=3

s2j
zjn

zj2z2n
.

Above equation can be changed to

0 = s21 +
n−1∑
j=3

s2j
zjnz12

zj2z1n

which is nothing, but the cross ratio identity we have
discussed.

Bo Feng Solving Scattering Equations



Example: 1
z3

12z3
34z3

56z23z45z61
= (123456) 1

z2
12z2

34z2
56

having three

double poles. To use the monodromy identity, we need to
expand (123456) by others without pole s12, s34, s56. One of
such expansion is

(123456) =

((
−(s21 + s23)

s12
+

−(s25 + s26)(s43 + s42)

s12s34

)
−(s56 + s54)

s56

+
(s25 + s26)(s46 + s41)

s12s34

)
(132546) −

s26(s43 + s45)

s21s34
(135426)

+

((
−(s21 + s23)

s12
+

−(s25 + s26)(s43 + s42)

s12s34

)
(s53 + s51)

s56
+

s26(s41 + s46)

s21s34

)
(135246)

+

(
(s25 + s26)s41

s12s34

(−)(s56 + s52)

s56
+

s26s41

s21s34

)
(135264) +

(s25 + s26)s41

s12s34

s54

s56
(132645)

+

(
−(s21 + s23)

s12
+

−(s25 + s26)(s43 + s42)

s12s34

)
s51

s56
(153246) +

(s25 + s26)s41

s12s34

(s51 + s54)

s56
(153264)
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Remarks:

Using the cross ratio identity we may give a proof of
Feynman rules
Having fast and analytic algorithm to write results for any
CHY-integrands will open up a way to understand
CHY-construction further
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Thanks a lot for listening!!!
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