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Preulde

Our world up to now looks perturbative (S-matrix exists)

What can we expect in the UV?

Continues to be perturbative, with IR degrees of freedom still present in the UV (
Four fermi→ Electro Weak) S-matrix exists

Becomes non-perturbative, with IR degrees of freedom still present in the UV (
Quantum Gravity) S-matrix may exists

Becomes non-perturbative, with IR degrees of freedom emerging as bound state (
Pions→ QCD) S-matrix exists

Becomes a CFT S-matrix does not exists, even non-lagrangian
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Preulde

Becomes a CFT S-matrix does not exists, even non-lagrangian

Bootstrap approach (see Heng-Yu’s talk)

Vacuum manifold→ spontaneous symmetry breaking→ Goldstone bosons (EFT)
S-matrix does exists

What is the space of consistent EFT (from CFT)?
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Preulde

In a EFT we have an infinite set of irrelevant operators

LEFT = Lmarginal +
∑

i

ciOi (∂, φ)

In general ci → ci (g,N)

For non-lagrangian theories ci is simply a number!

For theories with S-duality, ci (g,N) is constrained

With SUSY some ci are determined exactly

How much constraint can we impose in the IR on LEFT ?
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Prelude

The existence of a UV completion→ ci of higher dimension operators must be Positive
Adams, Arkani-Hamed, Dubovsky, Nicolis, Rattazzi

DBI

String theory
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Prelude

Unitarity: The parameters enter into M4:
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Prelude

Unitarity: The parameters enter into M4:
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Preulde

The D.O.F. for LEFT are Goldstone bosons→ Adler’s zero

Mn(π1 · · · )|p1→0 = 0

Mn M
0
n=

eθG|0〉 = |θ〉, M0
n ≡ 〈0| · · · |0〉

Mθ
n ≡ 〈θ| · · · |θ〉 = M0

n + M0
n+π + M0

n+π+π + · · ·

The U(1) goldstone bosons are derivatively coupled: L(∂φ) (Non-abelian extension
see I. Low 14)
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Preulde

Space-time symmetry breaking are different

The generators have non-trivial commutator with P

[P,K ] ∼ D

The Goldstone modes of the broken generators are derivatively related One
dilaton

For sCFT, there will be associated broken internal symmetries pions

There are multiple Goldstone modes for spontaneous space-time symmetry breaking

What does this imply for the effective action?
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Outline

New soft theorems for spacetime symmetry breaking

Perturbative and non-perturbative checks

Constraints on the effective action

Constraints from maximal SUSY

Scale vs Conformal Symmetry
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Soft theorems

Ward identity

∂µ〈Jµ(x)φ(x1) · · ·φ(xn)〉 = −
∑

i

δ(x − xi )〈φ(x1) · · · δφ(xi ) · · ·φ(xn)〉

Spontenous symmetry breaking implies Jµ|0〉 = pµ|phys〉

LHS: performing LSZ reduction on i = 1, · · · , n→ Mn(π1 · · · )|p1→0 = 0

RHS:
{

= 0 if δφ 6= |phys〉
6= 0 if δφ = |phys〉

Conventional spontaneous symmetry breaking: δφ = constant hence Adler’s zero
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Soft theorems

Spontaneous broken dilation and conformal boost generator leads to single dilaton,

[K ,D] ∼ K

The dilaton transforms linearly under the broken generator→ non-vanishing soft-limits:
Boels, Wormsbecher, Y-t Wen, Di Vecchia, Marotta, Mojaza, Nohle

Mn
∣∣
pn→0 =

(
S(0)

n + S(1)
n

)
Mn−1 +O(p2

n) ,

(S(0)
n ,S(1)

n ) are universal soft functions

S(0)
n =

n−1∑
i=1

(
pi ·

∂

∂pi
+

d − 2
2

)
− d ,

S(1)
n = pµn

n−1∑
i=1

[
pνi

∂2

∂pνi ∂pµi
−

piµ

2
∂2

∂piν∂pνi
+

d − 2
2

∂

∂pµi

]
.
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Soft theorems

There’s more! In general CFTs with scalar moduli space has “flavor” symmetry, which
will be spontaneously broken along with conformal symmetry→ pions

Exp: N = 4 SYM on Coulomb branch, 6 massless scalars (1 dilaton ϕ, 5
SO(6)→SO(5) GBs φI )

An(φ1, · · ·, φI
n)
∣∣
pn→0 =

∑
i

An−1(· · ·, δIO, · · ·)+O(p1
n) .

where δIϕ = φI and δIφJ = −δIJϕ.
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Soft theorems

The soft theorems should be respected

In the UV where massive D.o.F are present

In the IR where massive D.o.F integrated away perturbatively

In the IR where massive D.o.F integrated away non-perturbatively

Let’s check
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Perturbative Verifications

The one-loop effective action of N = 4 SYM on the Coulomb branch, up to six fields

+ +

Derived from the integrand of SYM in D-dimensions (scalars: ε · ki = 0, ε · ` = m for ϕ,
ε · ` = 0 for φI )

LSU(4) singlet
1−loop =

g4N
32m4π2

(
OF4 +

OD4F4

23×15m4
−

2OD2F6

15m6
+
OD4F6

23×21m8
−

OD6F6

2×152m10
+ · · ·

)

LSp(4)
1−loop =

∂4ϕ4

16m4
+

∂8ϕ4

960m8
+
∂4ϕ5

4m6
+

∂8ϕ5

480m10
−

5∂4ϕ6

4m6

−
∂8ϕ6

480m10
+

∂10ϕ6

21035m12
+

∂12ϕ6

21132m14
+
∂4ϕ2φ′2

8m4
−

5∂4ϕ2φ′4

4m6
+
∂4ϕ4φ′2

4m6
+ . . .
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Perturbative Verifications

All soft theorems are satisfied
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Non-Perturbative Verifications

The instanton effective action of N = 4 SYM on the Coulomb branch, Massimo, Morales,

Wen

S1−inst
eff = c′

g4

π6
e2πiτ

∫ d4x d8θ
√

det4N 2Φ̄Au,Bv√
det2N

(
ΦABΦ̄AB + 1

g F̄ + 1√
2g

Λ̄A(Φ−1)ABΛ̄B

)
α̇u,β̇v

.

The N = 4 on-shell superfields can be expanded in terms of the component fields
{φAB , λA

α,F
−
αβ}. For just the scalars,

Φ̄AB = φ̄AB , Λ̄Aα̇ = i θBα∂αα̇φ̄AB , F̄α̇β̇ =
1
2
θAαθBβ∂αα̇∂ββ̇ φ̄AB

We obtain simple dilaton effective action

,
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Non-Perturbative Verifications

But horrific vertices when expanded around ϕ→ v + ϕ

All soft theorems are satisfied
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Constraints on effective action

Using the fact that S-matrix are analytic functions, we start with: Britto, Cachazo, Feng, Witten

An(0) =

∮
|z|=0

dz
An(z)

z
= −

∮
|z|=z∗

dz
An(z)

z
,

z

The constraint from soft-theorems can be utilized via augmented recursion:Cheung,

Kampf, Novotny, Shen, Trnka

An(0) =

∮
|z|=0

dz
An(z)

zF (z)
= −

∮
|z|=z∗

dz
An(z)

zF (z)
−
∮
|z|=z∗

dz
An(z)

zF (z)
,

z
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Constraints on effective action

Take

A(z) = A|pi→(1−zai )pi
, Fn(z) =

n∏
i=1

[(1− zai )]di

with
∑

i ai pi = 0

An(0) =

∮
|z|=0

dz
An(z)

zF (z)
= −

∮
|z|=z∗

dz
An(z)

zF (z)
−
∮
|z|=z∗

dz
An(z)

zF (z)
,

z

The residue of F (z) is determined

A(z)→ A0 + A1q + A2q2 + · · ·Ad qd−1

where q = (1− zai )pi
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Constraints on effective action

The residue of F (z) is determined

A(z)→ A0 + A1q + A2q2 + · · ·Ad qd−1

Since for the pure dilaton sector

Mn
∣∣
pn→0 =

(
S(0)

n + S(1)
n

)
Mn−1 +O(p2

n) ,

we have d = 2.
The pure dilaton amplitude can be constructed using recursion

An(0) =

∮
|z|=0

dz
An(z)

z
∏

i (1− zai )2

The denominator ∼ z2n, while An(z) ∼ z2m for order ∂2m → we need n > m
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Constraints on effective action

The pure dilaton sector is highly constrained:

sn \ # of points 4 5 6 7 8 · · ·
2 × X X X X X
3 × X X X X X
4 × X X X X X
5 X × X X X X
6 X X × X X X
7 X X X × X X
8 X X X X × X
... · · · · · · · · · · · · · · · · · ·

At sn, the EFT is determined up to coefficients for operators ∂2nϕn
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SUSY Constraints on effective action

Maximal SUSY is known to give exact results:

s2: F 4 operator one-loop exact λ =
(

g4N
8π2m4

)
For the pure field-strengths Chen, Y-t, Wen

There are no local susy matrix elements that encode F 2
−F n−2

+ →must have zero
coefficient

F
4

F
4

F
6

One obtains an exact recursion formula
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SUSY Constraints on effective action

Assume D=4 maximal susy

s2: F 4 operator one-loop exact λ =
(

g4N
8π2m4

)
s3: A(3)

4 = A(3)
5 = 0, and the first non-zero would be A6

A(3)
6 = a1(s3

12 + P6) + a2(s3
123 + P6)

+ λ2
(

(s2
12 + s2

13 + s2
23)

1
s123

(s2
45 + s2

46 + s2
56) + P6

)
soft theorem fixes a1 = 0 , a2 = −λ2 → A(3)

n is two-loop exact

Up to six-derivatives, the effective action is identical to DBI in AdS5 × S5

Yu-tin Huang NTU

Towards the simplest EFT



SUSY Constraints on effective action

s4: Recursion determines all n > 4 in terms of the four-point∑
m≤8

L∂mφn = δm,8 c(2)
4 (g,N)L`=1

∂8φn +
∑
m≤8

LDBI
∂mφn ,

s5:

P(3)
4 (sij ) = c(3)

4 (g,N)× (s3
12 + P4) , P(3)

5 (sij ) = c(3)
5 (g,N)× (s3

12 + P5) .

Soft theorem determines c(3)
5 (g,N) = −c(3)

4 (g,N)

L∂10φn = c(3)
4 (g,N)L`=1

∂10φn + λ× c(2)
4 (g,N)L`=2

∂10φn + LDBI
∂10φn ,

Maximal SUSY fixes the effective action up to 10 derivatives in terms of two unknown
coefficients
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Scale vs Conformal symmetry

Mn
∣∣
pn→0 =

(
S(0)

n + S(1)
n

)
Mn−1 +O(p2

n) ,

S(0)
n =

n−1∑
i=1

(
pi ·

∂

∂pi
+

d − 2
2

)
− d ,← Dilatation

S(1)
n = pµn

n−1∑
i=1

[
pνi

∂2

∂pνi ∂pµi
−

piµ

2
∂2

∂piν∂pνi
+

d − 2
2

∂

∂pµi

]
← Conformal Boost .

“To what extent does the sub-leading soft theorem, due to broken conformal boost
symmetry, follow from the leading behaviour stemming from broken dilation symmetry?”

To all order in derivative coupling, the five point matrix elements satisfying leading
soft automatically satisfies subleading soft theorems.

At order sn, all 2n-point amplitudes can be recursively constructed via leading soft
theorems. Explicit computation has shown that subleading soft theorems are
again automatically satisfied.
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Perturbative completion

So far we have consider

LEFT = Lmarginal +
∑

i

ciOi (∂, φ)

for higher insertions n > 4. Can we say more about n = 4?

M4 =
∑
p,q

cp,qσ
p
2σ

q
3 , σ2 = s2 + t2 + u2, σ3 = stu

Continues to be perturbative, with IR degrees of freedom still present in the UV (
Four fermi→ Electro Weak) S-matrix exists

We can employ unitarity
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Perturbative completion

Let’s assume a perturbative spectrum that is of integer spacing (why?)

Arises in string theory, and many compactification scenarios

Necessary for a chance of unitary M4

→ A3(φ1, φ2 , h`)× A3(h`, φ3 , φ4)

Since the residue

must take the simple form:

[(p1 − p2) · (p3 − p4)]2n = (t − u)2n = (2t + s)2n

the residue must be a definite positive function in t :
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Perturbative completion

Let’s assume a perturbative spectrum that is of integer spacing (why?)

Arises in string theory, and many compactification scenarios

Necessary for a chance of unitary M4

M ∼
f (s, t)

(s−m1)(t−m2) · · ·

∣∣∣∣
s=m1

→
f (m1, t)

(t−m2) · · ·

Unitarity requires the function f (m1, t) to have a zero when t = m2, and all other
t-channel poles.
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Perturbative completion

Let’s assume a perturbative spectrum that is of integer spacing (why?)

Arises in string theory, and many compactification scenarios

Necessary for a chance of unitary M4
f (s, t) is a bounded polynomial function that has zero for each pair of
(s, t) = (mi ,mj )!

f (m1,m1) = f (m1,m2) = · · · = f (mi ,mj ) = 0

There are more zeros than poles, unless integers
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Perturbative completion

Consider the amplitude for some fixed t = t∗, which we express in the form of a
dispersion relation

M(s, t∗) =

∫
v=s

dv
M(v , t∗)

v − s
= −

Res[M(v , t∗)]|v=v∗

v∗ − s

The residues in the complex s-plane lies on the real axis, where poles in the positive
region are s-channel resonance, and negative region are from u-channel resonance.
Due to permutation invariance, the residue of a given s-channel resonance, say s = n,
there will be the opposite of the u-channel resonance in the negative s-branch,
s = −n − t∗

M(s, t∗) = −
∞∑

n=0

Res[M(v , t∗)]|v=n(2n + t∗)
(n − s)(n + t∗ + s)
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Perturbative completion

M(s, t∗) = −
∞∑

n=0

Res[M(v , t∗)]|v=n(2n + t∗)
(n − s)(n + t∗ + s)

Now, consider the case where t∗ = −2, then we have:

M(s,−2) = −
Res[M(v ,−2)]|v=0(−2)

(−s)(−2 + s)
−

Res[M(v ,−2)]|v=1(0)

(1− s)(−1 + s)

−
Res[M(v ,−2)]|v=2(2)

(2− s)(s)
−
∞∑

n=3

Res[M(v ,−2)]|v=n(2n − 2)

(n − s)(n − 2 + s)
. (1)

There are no poles at s = 0, 1! For t = −n the poles of s = 0, 1, · · · , n are missing

Res[M(s, t)]|s=0 =
∞∏
i=1

(t + i)

But this is impossible for bounded high-energy behavior→ The S-matrix must have
zeros in the unphysical channel, at s = −n
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Perturbative completion

The S-matrix must have zeros in the unphysical channel, at s = −n

M4 ∼
∏

i (s + i)(t + i)(u + i)∏
i (s − i)(t − i)(u − i)

∼
Γ[−s + 1]Γ[−t + 1]Γ[−u + 1]

Γ[s + 1]Γ[t + 1]Γ[u + 1]
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Conclusion

For spontaneously broken space-time symmetry, the broken symmetry mixes
between various GB modes, leading to distinct soft features.

Combined with analyticity and unitarity this imposes stringent constraint on the
effective action: the entire action is determined by coefficient of ∂2nϕn.

Maximal susy allows us to push this up to ten-derivatives (the simplest EFT?)

A new arena to explore the relation between scale vs conformal invariance.
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Further directions

Constraint from S-duality

High-time to extract unitarity constraint beyond four-points (related to a-theorem)

Is the massless S-matrix well defined at the origin?

Compare
〈~φ〉 = (v , 0, 0, 0, 0, 0), vs, 〈~φ〉 = (v , v , v , v , v , v)

The latter has the usual Adler’s soft theorem. Do the near origin limit agree?
(Ratio functions)
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