Conformal Interfaces on Euclidean Sphere

Dongsu Bak

(with A Gustavsson and S Rey)

University of Seoul (USTC)

May 28, 2016

 $4.17 \times$

K 御 ⊁ K 唐 ⊁ K 唐 ⊁

重

 $2Q$

Conformal Interfaces

- \triangleright An interface refers to d-1 dimensional field theory system immersed inside a d-dimensional bulk.
- \blacktriangleright Interface CFT

The bulk and the interfaces can be off-critical or critical separately. As change of parameters, the interface system may undergo variety of phase transitions.

 \blacktriangleright In this talk we would like to consider both the bulk and the interfaces are at criticality which allows us to use the AdS/CFT correspondence.

- \triangleright This interface CFT is basically described by the Janus deformation of the bulk CFT. [Bak-Gutperle-Hirano, 03, 07]
- \blacktriangleright Interface CFT

The coupling costant dual to a marginal operator $O_d(x)$ jumps across the interface while keeping $SO(d,1)$ out of $SO(d+1,1)$ conformal symmetry.

$$
\int d^d x \, [\mathcal{L}_{\text{CFT}} + \phi_I \, \epsilon(x_1) O_d(x)]
$$

Below we take O_d to be the Lagrange density operator:

 $O_d(x) = \mathcal{L}(x) \leftrightarrow \phi(x)$: dilaton

Begin with a planar interface of R^{d-1} emmersed in the Euclidean R^d .

 $2Q$

Janus on a sphere

 \triangleright By a conformal map, one can put the system on a Euclidean d sphere described by the metric

$$
ds_d^2(\Omega) = r^2(d\theta^2 + \sin^2\theta \, ds_{S^{d-1}}^2(\omega))
$$

where θ is the altitude coordinate ranged over [0, π].

- \blacktriangleright The interface is located at the equator $\theta = \frac{\pi}{2}$ $\frac{\pi}{2}$ which is d-1 sphere.
- \triangleright This will introduces localized degrees that couple to the northen and the southern hemispheres.

Hybrid of CFT d and CFT $d-1$

- \triangleright Weyl and chiral symmetries are anomalous in even dimensions whereas they are intact in odd dimensional theories.
- ▶ Since our Janus system combines CFTs of even and odd dimensions at the same time, one finds always anomalies in one of bulk or interface.

 \triangleright We will confirm this indeed!

Janus geometry

 \blacktriangleright AdS Einstein scalar system

$$
I = -\frac{1}{16\pi G} \int d^{d+1}x \sqrt{g} \left(R + d(d-1) - g^{ab} \partial_a \phi \partial_b \phi \right)
$$

 \blacktriangleright Einstein scalar equations:

 $R_{ab} + d g_{ab} = \partial_a \phi \partial_b \phi$ $\partial_a(\sqrt{g}g^{ab}\partial_b\phi)=0$

 Ω

 \triangleright This system can be embedded into IIB SUGRA in a consistent manner in the 3 and 5 dimensions. [Bak-Gutperle-Hirano, 03, 07] Here we shall be mainly concerned with the three and four dimensional cases.

The case without deformation: $\overline{\phi}$ turned off

 \triangleright We start with the Poincare patch coordinates

$$
ds^{2} = \frac{1}{z^{2}}[dz^{2} + dt^{2} + dx^{2}] = \frac{1}{\cos^{2} \mu} \left[d\mu^{2} + \frac{dt^{2} + d\xi^{2}}{\xi^{2}} \right]
$$

Make the coordinate transformation

 $z = \xi \cos \mu$, $x = \xi \sin \mu$

where $-\pi/2 \leq \mu \leq \pi/2$.

 \triangleright The total metric becomes an AdS2 sliced AdS3 Poincare patch coordinates.

 \triangleright We now introduce another slicing coordinate y defined by

$$
dy = \frac{d\mu}{\cos \mu}
$$

which is solved by

$$
\cosh y = \frac{1}{\cos \mu}
$$

This leads to the metric

$$
ds^{2} = dy^{2} + f(y)ds^{2}_{AdS_{2}} = dy^{2} + \cosh^{2} y \frac{dt^{2} + d\xi^{2}}{\xi^{2}}
$$

where the slicing coordinate y is ranged over $(-\infty, \infty)$.

 \triangleright We note that the AdS₂ part can be replaced by any AdS₂ metric that satisfies the AdS_d equation

$$
\bar{R}_{\rho q}=-(d-1)\bar{\mathsf{g}}_{\rho q}
$$

with $d = 2$.

Global Euclidean AdS₃

 \triangleright We take the global Euclidean AdS₂ metric given by

$$
ds_{M_2}^2 = \frac{1}{\cos^2 \lambda} \left[d\lambda^2 + \sin^2 \lambda d\phi^2 \right]
$$

where $\lambda \in [0, \pi/2]$

へのへ

 \blacktriangleright The full metric takes the form

$$
ds2 = dy2 + f(y)ds2M2 = dy2 + \cosh2 y \frac{1}{\cos2 \lambda} [d\lambda2 + \sin2 \lambda d\phi2]
$$

 \triangleright One can see that y=0 has the shape of the AdS₂ disk.

- \blacktriangleright The slicing coordinate y runs in this manner.
- \triangleright Positive y describes the upper part whereas the negative y corresponds to the lower part. The boundary has the shape of 2 sphere.

Introducing the coordinates ρ and θ by

$$
\cosh \rho = \frac{\cosh y}{\cos \lambda}, \quad \cos \theta = \frac{\sinh y}{\sinh \rho}
$$

 \blacktriangleright the above metric becomes

$$
ds^2 = d\rho^2 + \sinh^2 \rho \left[d\theta^2 + \sin^2 \theta \, d\phi^2 \right]
$$

 \triangleright This is global Euclidean AdS₃ and the sphere shape of its boundary is rather clear.

 Ω

Janus deformation of global Euclidean AdS_3

 \blacktriangleright AdS₂ slicing ansatz

$$
ds2 = dy2 + f(y)ds2M2, \phi = \phi(y)
$$

 \blacktriangleright This ansatz leads to ordinary differential equations,

$$
f'f' = 4f^2 - 4f + 4\gamma^2
$$
, $\phi' = \frac{\gamma}{f}$

where γ is the deformation parameter related to the interface coefficient.

i al T≣ira

▶ One finds [Bak-Gutperle-Hirano, 07]

$$
f(y) = \frac{1}{2}(1 + \sqrt{1 - 2\gamma^2} \cosh 2y)
$$

$$
\phi(y) = \frac{1}{\sqrt{2}} \log \left(\frac{1 + \sqrt{1 - 2\gamma^2} + \sqrt{2}\gamma \tanh y}{1 + \sqrt{1 - 2\gamma^2} - \sqrt{2}\gamma \tanh y} \right)
$$

 $\blacktriangleright \ \gamma \in [0,1/$ √ 2] and $-\phi_{I} \leq \phi({\sf y}) \leq \phi_{I}$ where

$$
\phi_I=\frac{1}{\sqrt{2}}\mathrm{arctanh}\sqrt{2}\gamma
$$

a mills.

 \Box \rightarrow \equiv 重

4. E. K

 $2Q$

Shape of Janus3

cross sectional shape boundary two sphere

目

重

 299

 \leftarrow \Box

×. A \sim 41 手 \blacktriangleright The explicit solutions for the higher dimensions:

$$
\mathrm{d}s_{\pm}^2 = \frac{\ell^2}{q_{\pm}^2} \left[\frac{\mathrm{d}q_{\pm}^2}{P(q_{\pm})} + \mathrm{d}s_{M_d}^2 \right]
$$

$$
\phi_{\pm}(q_{\pm}) = \pm \gamma \int_{q_{\pm}}^{q_{\pm}} \mathrm{d}x \frac{x^{d-1}}{\sqrt{P(x)}},
$$

where where $P(x)$ is the dimension dependent polynomial

$$
P(x) = 1 - x^2 + \frac{\gamma^2}{d(d-1)} x^{2d}
$$

and q_* denotes the smallest positive root of $P(x)$.

 \triangleright We choose M_d as the global Euclidean AdS_d described by

$$
\mathrm{d}s^2_{M_d} = \frac{1}{\cos^2\lambda} [\mathrm{d}\lambda^2 + \sin^2\lambda\,\mathrm{d}s^2_{S^{d-1}}]
$$

5 8 9 9 9 9 9 9 1

 $2Q$

Janus in general dimensions

- \triangleright q_{\pm} is ranged over [0, q_{*}]. To cover the entire space, the two corresponding patches should be joined at $q_{\pm} = q_*$.
- \triangleright The explicit form is important here since we would like to carry out the integral in the evaluation of the partition functions below.
- \triangleright Finally let us note the Janus geometry has the isometry $SO(d,1)$ of AdS_d space whereas the original AdS_{d+1} vacuum geometry possesses $SO(d+1,1)$ isometry.

 $A \cap B$ is a $B \cap A \cap B$ is

partition functions and dualities

- In this gravity side we evaluate the on-shell action corresponding to the free energy. \rightarrow Divergent! We use the procedure of the so called holographic renormalization. [de Haro-Soludukin-Skenderis, 01]
- \blacktriangleright Global AdS

$$
ds^2 = d\rho^2 + \sinh^2 \rho \, ds^2_{S^d}
$$

Introduce the FG coordinate system

$$
ds^{2} = \frac{du^{2}}{u^{2}} + \frac{1}{u^{2}} h_{ij}(x, u^{2}) dx^{i} dx^{j}
$$

=
$$
\frac{du^{2}}{u^{2}} + \frac{1}{u^{2}} \left(1 - \frac{u^{2}}{4r^{2}}\right) r^{2} ds_{S^{d}}^{2}
$$

where

$$
u=2re^{-\rho}
$$

Regularization

 \blacktriangleright Regularization:

Introduce the cut-off surface near AdS boundary

 $u = \epsilon = 2r\delta$

 $2Q$

 \blacktriangleright The Einstein-Hilbert action with the Gibbons-Hawking term

$$
I_{reg} = -\frac{1}{16\pi G} \int_{M_{\epsilon}} d^{d+1}x \sqrt{g} \left[R - g^{ab} \partial_a \phi \partial_b \phi + d(d-1) \right] - \frac{1}{8\pi G} \int_{\partial M_{\epsilon}} d^d x \sqrt{\gamma} K
$$

 \leftarrow \Box

 \triangleright Carrying out the integral, the regularized action takes the form,

$$
\displaystyle I_{\mathrm{reg}} = \frac{1}{16\pi G} \!\!\int \sqrt{h_B} \Big(\frac{a_{(0)}}{\epsilon^d} + \frac{a_{(2)}}{\epsilon^{d-2}} + \cdots - \! 2 \log(\epsilon) a_{(d)} \Big) \! + \! O(\epsilon^0)
$$

where the logarithmic contribution exists only when d is even.

 \blacktriangleright In the holographic renormalization, we choose the counter-term as

$$
I_{\mathrm{ct}} = -\frac{1}{16\pi G} \int \sqrt{h_B} \Big(\frac{a_{(0)}}{\epsilon^d} + \frac{a_{(2)}}{\epsilon^{d-2}} + \cdots - 2 \log(\epsilon) a_{(d)} \Big)
$$

 \blacktriangleright Adding together,

$$
I_{ren} = \lim_{\epsilon \to 0} (I_{\text{reg}} + I_{\text{ct}})
$$

First, we keep the maximal remaining symmetry of $SO(d+1)$ for our choice of the cut-off surface.

 Ω

- \triangleright The renormalized action is still dependent on the renormalization scheme one is adopting. For the match with the field theory computation, the renormalization schemes of the both sides have to be specified consistently.
- \triangleright Second, the logarithmic term is related to the Weyl anomaly of even dimensional CFT.

$$
\displaystyle I_{\mathrm{reg}} = \frac{1}{16\pi G} \!\!\int \sqrt{h_B} \Big(\frac{a_{(0)}}{\epsilon^d} + \frac{a_{(2)}}{\epsilon^{d-2}} + \cdots - 2\log(\epsilon) a_{(d)} \Big) + O(\epsilon^0)
$$

where the logarithmic contribution exists only when d is even.

 \triangleright Thirdly later for the Janus deformation, the terms of remaining singular powers are also present:

$$
b_{(1)}\epsilon^{-d+1}+b_{(3)}\epsilon^{-d+3}+\cdots
$$

桐 トラ ミュ エト

Undeformed cases

 \triangleright By a straightforward computation, one has

$$
I_{\text{reg}} = \frac{\text{Vol}_{S^d}}{16\pi G} \frac{d}{2^{d-1}} C_d(\delta)
$$

 \blacktriangleright For $d = 2$, one finds

$$
C_2 = -\frac{1}{2} \left(\frac{1}{\delta^2} - \delta^2 \right) + 2 \log \delta
$$

where, the logarithmic term is related to the Weyl anomaly of even dimensional CFT. This leads to the renormalized action

$$
I_{\rm ren} = -\frac{c}{3}\log 2r = -\frac{c}{3}\log \mu r
$$

with the relation $c = 3/(2G)$.

 \triangleright Thus the partition function is given by

$$
Z_{\rm ren}:=\exp(-I_{\rm ren})=(r\mu)^{\frac{c}{3}}
$$

Anomalous under $r \rightarrow (1 + a)r$.

$d=3$ and 4

For $d = 3$, one has

$$
C_3 = \frac{16}{3} - \frac{2}{3\delta^3} - \frac{2}{\delta} - 2\delta + \frac{2\delta^3}{3}
$$

Thus the partition function is given by

$$
Z_{\rm ren}=e^{-\frac{\pi}{2G}}
$$

that agrees with the known result of $AdS_4 \times CP_3$. [Marino 11] \blacktriangleright For d=4, one finds

$$
Z_{\text{ren}}=(\mu r)^{-\frac{\pi}{2G}}=(\mu r)^{-N^2}
$$

for the $\mathcal{N} = 4$ SU(N) SYM. [Pestun 07]

御き メミメ メミメー

 $2Q$

后

Janus deformation

- \triangleright One can only keep the SO(d) symmetry out of SO(d+1) symmetry of the boundary sphere \mathcal{S}^d .
- \triangleright Unfortunately FG coordinate is NOT globally defined with the Janus deformation.
- \blacktriangleright First we choose the cut off surface essentially the same as those of the undeformed geometry if one is at least infinitesimally away from the interface. For the remaining infinitesimal region we extend the above surface in a natural manner.

ICFT₂

 \triangleright For d=2, with Janus solution, we find the bulk term together with the interface contribution

$$
I_{\text{reg}} = I_{\text{reg}}^0 + \Delta I_{\text{reg}}
$$

= $\frac{1}{4G} \left[-\frac{1}{4} \frac{1}{\delta^2} + \log \delta + O(\delta) \right]$
+ $\frac{1}{4G} \left[-\frac{2}{\delta} \alpha (\sqrt{1 - 2\gamma^2}) - \log \frac{1}{\sqrt{1 - 2\gamma^2}} + O(\delta) \right]$

where $\alpha(z)$ is

$$
\alpha(z) = \frac{\sqrt{1+z}}{\sqrt{2}} \left[\mathbf{K} \left(\frac{1-z}{1+z} \right) - \mathbf{E} \left(\frac{1-z}{1+z} \right) \right]
$$

a mills.

メ 御 メ メ ヨ メ メ ヨ メー

重

 $2Q$

$ICFT₂$

 \triangleright With the minimal subtraction of the counter terms,

$$
I_{\text{ren}} = -\frac{1}{4G} \left[2 \log(\mu r) + \frac{1}{2} \log \frac{1}{\sqrt{1 - 2\gamma^2}} \right]
$$

 \triangleright And the corresponding partition function becomes

$$
Z = Z_0 \,\Delta Z = (\mu r)^{\frac{c}{3}} \left[\frac{1}{\sqrt{1 - 2\gamma^2}} \right]^{\frac{c}{6}}
$$

 \triangleright The interface contribution is scale invariant. This reflects the characteristic of odd dimensional CFT which preserves SO(2,1) conformal symmetries.

マーター マーティング

 Ω

Interface entropy

 \triangleright $-\Delta l$ can be related to the interface entropy S_I [Azeyanagi-Karch-Takayanagi -Thompson 08] by a conformal transformation

$$
-\Delta I \to S_I = \ln(\cosh \sqrt{2} \phi_I)^{\frac{c}{6}}
$$

▶ Janus black holes! [Bak-Gutperle -Janik 11]

 \sim

 \leftarrow \equiv

 $2Q$

ICFT₃

 \triangleright For d=3 Janus solution, the regulated action is evaluated as

$$
I_{\text{reg}} = I_{\text{reg}}^0 + \Delta I_{\text{reg}} \\
= \frac{\pi}{16G} \left(-\frac{1}{\delta^3} - \frac{3}{\delta} + 8 + O(\delta) \right) \\
+ \gamma^2 \frac{\pi}{64G} \left(-\frac{7}{4\delta^2} + 4 \log \delta - \frac{11}{2} + 4 \log 2 \right) + O(\gamma^4)
$$

 \triangleright We see that the interface contribution has the structure of CFT₂ of two sphere. \rightarrow Wely anomaly!

$$
\Delta I_{\text{ren}} = -\frac{c_{\text{eff}}(\gamma)}{3} \log r + d(\gamma)
$$

\n
$$
c_{\text{eff}} = \frac{3\pi \ell^2}{16G} \gamma^2 + O(\gamma^4)
$$

\n
$$
d(\gamma) = -\frac{11\pi \ell^2}{128 G} \gamma^2 + O(\gamma^4)
$$

 \rightarrow \pm \rightarrow

 $2Q$

后

Stress tensor

 \triangleright Consider the undeformed CFT in two dimensions: Weyl trace anomaly dictates

$$
\langle T^{i}_{i} \rangle_{\text{CFT}} = \frac{c}{24\pi} R(h_B) = \frac{c}{12\pi r^2}
$$

 \triangleright On two sphere of radius r, one finds the stress tensor is proportional to the metric

$$
\langle T_{ij} \rangle_{\text{CFT}} = \frac{c}{24\pi r^2} h_{ij}^B
$$

 \triangleright For the Janus the holographic computation can be carried out infinitesimally away from the interface.

$$
\langle T_{ij} \rangle_{\text{ICFT}_2} = \frac{c}{24\pi r^2} h_{ij}^B
$$

No interface contribution!

 Ω

Stress tensor of ICFT₃

 \triangleright Namely for d=3, again away from the interface, the standard holographic computation gives

$$
\langle T_{ij} \rangle_{\text{ICFT}_3} = 0
$$
 if $\theta \neq \frac{\pi}{2}$

 \triangleright The interface contribution can be identified from interface free energy which is scale dependent:

$$
\Delta I_{\text{ren}} = -\frac{c_{\text{eff}}(\gamma)}{3} \log r + d(\gamma) \n c_{\text{eff}} = \frac{3\pi \ell^2}{16G} \gamma^2 + O(\gamma^4) \implies \langle \Delta T_{\theta\theta} \rangle = \langle \Delta T_{\theta\alpha} \rangle = 0 \n d(\gamma) = -\frac{11\pi \ell^2}{128 G} \gamma^2 + O(\gamma^4) \qquad \qquad (\Delta T_{\alpha\beta}) = \frac{c_{\text{eff}}}{24\pi r^2} h_{\alpha\beta}^B \delta \left(\theta - \frac{\pi}{2}\right)
$$

 \triangleright The total energy momentum tensor is solely from the interface contribution.

 $4.50 \times 4.70 \times 4.70 \times$

Check by Conformal Pertubation Theory

 \blacktriangleright Remember

$$
\mathcal{L}(x) = \mathcal{L}_0(x) + \phi_B(x) \mathcal{O}_{\phi}(x)
$$

 \blacktriangleright Assuming

$$
\langle \mathcal{O}_\phi \rangle_{\rm CFT} = 0
$$

the correction to the free energy can be computed perturbatively

$$
\Delta F = -\frac{1}{2!} \int \phi_B(x) \int \phi_B(x') \, \langle \mathcal{O}_{\phi}(x) \mathcal{O}_{\phi}(x') \rangle_{\text{CFT}} + \cdots
$$

where we use the information of the correlation function of the undeformed conformal field theory.

 \triangleright One gets an agreement!

 \rightarrow \equiv \rightarrow

 Ω

Interface degrees and g-theorem

 \triangleright In two dimensional CFT, extra number of ground states are produced by the presence of boundary or interface. $S_1 = \ln g$ where g is the number of the extra ground state. The g-theorem says [Affeck-Ludwig 91]

$$
\frac{\mathrm{d}}{\mathrm{d}l}\,g(l)\leq 0
$$

If the RG flow is triggered by the operators localized on the boundary, one can prove this g-theorem. [Friedan-Konechny 03] However, if the RG flow is triggered by bulk operators, g function may either decrease or increase. [Green-Mulligan-Starr 08]

マーティ ミューエム

∽≏ດ

Related Janus solutions

 \blacktriangleright Indeed if one consider two interfaces whose interface $\mathsf{coefficients} \; \; \phi_I \; \mathsf{and} \; \phi_I', \; \mathsf{it} \; \mathsf{is} \; \mathsf{clear} \; \mathsf{that} \; \textcolor{red}{[\mathsf{Bak-Min} \; 14]}$

 $S_I(\phi_I, \phi_I', I/r) \rightarrow S_I(\phi_I + \phi_I')$

as $1/r \rightarrow 0$.

 \triangleright By conformal transformations one can construct the spherical shaped Janus solution on R^d and Janus solution on $R\times S^{d-1}$:

