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Let us begin with a four point function of scalar conformal primary
operator ¢;(x) with scale dimension A; in d-dimensional CFTs:

2\ @ o\ b
< d1(x1)d2(x2) P3(x3)Pa(xa) >= <X124> <X124> > <A1+FASJ’V) G185
(x32) :

X4 X13 T2 (X))
(1)

where x; = x; — x; a = 82581, p = £3284 and F(u,v) is a function of

conformally invariant cross ratios:

2 2
—zz, v="IB _(1_;(1-3).

2 2 3 2
X13%X24 X{3X54
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We can decompose four point function further into contributions from
the exchanged primary operators Oa ; and its descendants:

< $1(x1)P2(x2)P3(x3) Pa(xa) >= Z A1204, 7340, Wo, (X)) (2)
{Ona,1}

where Wo, ,(x;) is “conformal partial wave' and A120, ,, A3a0,, are
"OPE coefficients" .
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Conformal invariance also allows us to fix Wa (x;) into:
2\? /. 2\? G
X14 X14 Og, (u,v)
Wo,,(xi) = (2) (2) —EaT G (3)
X4 X3/ (xip) 2 (x%5) 2

where Go, ,(u,V) is the “Conformal Block" for O family.

The four point functions need to satisfy crossing symmetry equation
when . g ¢1(x1) <> d3(x)

Al +A2

Z 1204, 7340, , GO, (1, V) Em Z A0, Ao, ,Goy (V,u)
{OAJ} A/}
(4)

For unitary CFTs, if we know Gp, ,(u,v) exactly or at least some
approximate forms, then assuming A120, ,A340,, > 0, and start
numerically putting bounds on spectrum of {Ap}.
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Determining Go, ,(u, v) for general four point functions remains difficult,
one way is to consider “quadratic Casimir operator”: [Dolan-Osborn 03, 11]

N 1 1
C, = ELABLAB = 5([_1 + L2)AB(L1 + LZ)AB (5)

where L; og is Lorentz generator in d + 2-dimensional embedding space.

For scalar primaries, we can define following differential operators:

D(b€) = 22(1 — 2)9? — ((a+ b+ 1)22 — ¢2)d, — abz,
DP9 — 32(1 - 2)02 — ((a+ b+ 1)2% — ¢2)0s — abz, (6)

A5 (@b €) = D)+ D09 4 26 (1= 2)0. — (1= D)%), (7)

where ¢ = 92, Setting Go, ,(u,v) = Fi?/\i(z,i), the action of €; is

A+
292,600 Y, (2.2) = e AF (27), de =22l (9)
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In addition, we also have “quartic Casimir operator” :
A LY cD
C, = EL LgcL™="Lpa. (9)

The action of C4 on primary scalars is also expressed as eigen-equation:

A(a,5,0)- F, (2.2) = ca(A, A )R, (2.2), (10)

= 2e 1%
Agg)(a, b,c) = [ zz ] [Dga,b,c) _ Déa,b,c)} [ZZ} [Dga,b,c) . Déa,b,c)} .

z—2Zz zZ
(11)
The quadratic and quartic Casimir operators are by definition commuting:

[€2,C4] = 0= [A¥)(a, b,c), Al (a, b, c)] = 0. (12)
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Small Detour on Quantum Integrable Systems

A quantum integrable system can be constructed from classical one,
provided the quantization condition [, | preserves commutators of {Ix}:

[Ij,Ik]:O, E:[Ik,H]:O, k:l,...,n.

The generator of {I;} is called “Monodromy matrix” Ty .(\), usually
defined on a discretized lattice:

N N
o) =]]La(), HoV.=QRH @V,

r=1 r=1
such that Lax matrix Z,ya()\) acts on local H, and auxiliary space V,.
For Heisenberg XXX/, spin chain, H = ®£V:1 C2, V, =C?

Lo\ =A,01,+i(5 - 7) 95, = R(A—i/2) = (A—i/2)1,@1,+iP,,
H
on H,

where P, ; is the permutation operator P, sa, ® bs = b, R as.
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The generators of commuting conserved integrals of motions is:

N—-2
tnv(A) = Tra T a(A) = 2010 + > LA, [tw(A), tw(w)] =0,
r=0

spin component 33 completes N commuting quantum integrals of motion.

Interested in generalization of trigonometric “Calogero-Sutherland” spin
Systems: [Calogero, Sutherland 75]

A ﬂ —
Heg = — E E < Long range 2-body interaction,
CSs 2 q, sin2 (qi — qJ) g g y

where Kj; is the long range permutation operator:
K,'J"Sl,...75,',...,5j...5/\/ >= |517...,Sj,...,5,',...,5N >,

and s;=—/,—(/—-1),...,1, 1€ 5.
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The commuting integrals of motion are expressed in terms of the N
commuting “Dunkl| operators”: [punki 89]

Ji=i0g +BY (1 —icot(q —q))Kyj—28> Ky,
i#j J<i
[0, Ji]=0, j,k=1,...N

such that:
N
Ly ==>"J7, [l =0, ris=1,...N
i=1

Importantly, the permutation symmetric eigenfunctions can be obtained
analytically in terms of symmetric polynomials known as “Jack
Polynomials”, which are labeled by partition of non-negative integers
A1 > X > ... Ay >0, and we can study their various properties etc.
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QIS from Conformal Blocks

Now we establish the following exact mapping between QIS and CFT:
[HYC-Qualls]

[89(a,b,0). a0 (a,b,c)| =0 = |TPD 2] o,
Gou,(2,2) = ¥\ (u,0).

The quantum integrable system here is given by following Hamiltonian:

A H? 1o} (a - Kuﬂ) (a - IZuﬂ)
Hpe, = - +2 +
Be (8u2 ou? > 2 <sinh2(u o) sinh®(u + o)
b(b — ) b'(b’ - K,) b(b—Kz) b'(b—Kj)
+ 2 2 + T .2 - 5= .
sinh cosh” u sinh“ o cosh”

This is called “Hyperbolic Calogero-Sutherland spin chain of BC,, where

Permutation : Kzf(u, @) = f(0,u), Kuaf(u, @)= f(—0,—u),
Reflection : K,f(u,0) = f(—u,u), Kgf(u,)=f(u,—0).
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The commuting Dunkl operators are given explicitly by: [Finkel et al 12]

A 0 b b’ Kz K-
J(a) = — — | — - Ku _ uu _ uu _

Y Ou Lanhg  coth ‘2’} tanh 422 tanh 458 |7
j(a) = g — L bil _ Kuﬁ . Kuz

“ 0n |tanh¥ cothZ] tanh 25%  tanh 432 |’

and there are two independent commuting integrals of motion:

jéBCQ) _ ﬁBCZ _ (jga))2 B (jE—,a))27 i&BCZ) _ (jga))“ B (j%a))4.

(13)
The first step is to look for the appropriate commutator-preserving
Coordinate transformation: [Isachenkov-Schomerus, HYC-Qualls]
- 1
A5)(a,b,c) — b (220 (2 bo) = (14)
Xa,b c(27 Z)

to relate CFT Casimirs to the commuting quantum integrals of motion.
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The desired transformation is given by the following double-cover map:

1 . 1
2(u) = sinh? u 2(1) = sinh? o
u [(L— 2(u)(1 — 2(@)]" T [2(u) — 2(m)]°
Wl 2y = 2R 2
(15)
Explicit computation then shows that:
(2,285 (a, b, >X()1() = 4T = e
a=g¢, b:(a—b)—&-%, b’:(a+b—c)+§. (16)

Notice when e =0ore=1,i. e. d =2 or d = 4, pair-wise interactions
both vanish (Pdschl-Teller). More generally we have the correspondence:

O\ (1) = X5 (2(), 2(2))F,_(2(u). 2(D))

The eigenfunction is manifestly symmetric under u <> @.
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The quartic Casimir Aff)(a, b, c) can also be expressed in terms of
7{B) and Z8°) First we can show that acting on 1/J§\€+),\_(U7 u):

(19 = (39)7 = 840 2.1 [0 — 9] L (17)

f‘ﬁ;) = jSIE) + jE_IE) + 2€KUD5 (u) = j( e j(s) + 2€KUTJ
We can next show that:

£ ()7 (=) ) 3 | (10) _ (1) 1 (e) _
Luu L ql))\+ ( ) t (272) |:(Ju ) (Ju ) :| t(e)(272)¢A+>\_(u7 U),

tC)(z(u), 2(7)) = [sinh(u + @) sinh(u — T)]° . (18)

Using the invariance of wg\‘?/\_(u, ) under reflection and permutation.
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While above expression is invariant under K, and Kg, however crucially:
Kl L v, (v.8) = LRG0, (v

uu uu )7

KUUL +)Luu)w ( U) ut)Luu)w ( a)7

:I

These properties in turn imply:

1 %(0) 2(0))? ©) (- )2 | (5(0) 2 5(0))? w(A?A-
t©)(z,2) {(J ) - (Jﬂ ) ]t (2.2) {(J ) N (Jﬁ ) } t(z,2)
This precisely equals to gauge-transformed Aff)(a, b, c) and expanding
) ) 1 1 1
Xabc(z Z)A (a b C)()i I4 + I + I2 +5 (19)
Xa,b,c(z’z) 8 16
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Now we have the following correspondence:

= [To,T4] = 0. (20)

)0

ngl)n C(Z,Z) [Ags)(av b, C)vAElE)(av b, C) (g) -
Xa,b,c z,z

Not only Ag‘g)(a, b, c) but also Aff)(a, b, ¢) can be mapped to commuting
conserved integrals of motion of BC, Calogero-Sutherland spin system!
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Supersymmetric Generalization

The correspondence established appears to be more general, also extends
to superconformal field theories (SCFT) with four and eight supercharges.
This can be attributed to two observations:

1. Superconformal blocks are known to be linearly expanded in terms
Of Conformal blOCkS. [Poland-Simmons-Duffin 11, Fitzpatrick et al 14, Khandker et al 14]

2. Non-supersymmetric conformal blocks enjoy certain “recurrence
relations” relating different {Go, ,(z,Z)}. Dolan-0sborn 03, 11]

They yield multiplicative relations between super and conformal blocks.

More specifically, for SCFT with four supercharges we have: [Bobev et al 15]

GNTHz,2) = (22) 1 GAY M (2, 2), (21)

)

where ggffl(z, z7) is the superconformal block of scalar primaries:
< ¢1(X1)¢2(X2)¢3(X3)¢4(X4) > with constraint Ay 3 = %Ch,a-
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We can interpret this (zz)~1/2 factor as part of gauge transformation.
This is confirmed from superconformal €)=, whose action is:

A (a+1,6,1)- FV5(2,2) = S0 A)(2,2). (22)

The transformed Ags)(a +1,b,1) and fi\ﬁf (z,Zz) are identified with the
Hamiltonian and eigenfunction of BC, CS system with shift in (b, b’).

For SCFTs with eight supercharges, we consider four point function:
[Lemos-Liendo 15]

(D1(x1) P2 (x2) P3(x3) Pa(xa)) (23)

where the U(1)g charges g1 = —q4 and g2 = —q3. In 4d V' =2 SCFT,
it is an eigenfunction of A(zl)(a, a+ 2,2) which can be transformed into
BC, CS system Hamiltonian. We would like to conjecture this to be true
for arbitrary d-dimensions.

A small byproduct is the action of quartic superconformal Casimir:

C)=t =A@ +1,b,1). (24)
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Generalization to External Spins

When external operators carry space-time spins, we need to decompose
correlation function into independent Lorentz tensor structures. In four
dimensions, we consider “seed conformal partial waves” [Echeverri et al 16]

Wt (xi) = (610x) F2(32) P33 ) F P (xa)

T34

1
2 5= 2 - P (p)
[ Xia 2 X14 2 e=0 Ge ( ) J42 ,31
- 2 2 2 (7142”2) 2 )(7342”4) )

X24 X13 (xi2) (X34

where 7; = ’er”', I and Jjj i are independent tensor structures.
Now Wg{jc/d (xi) as whole remains an eigenfunction of C,, however I;; and

Jij i are permuted, {Gép)(u,v)} obey coupled PDE instead:

2 P
[Aé”“(ae, be, ce) + 5] GP) + APzZL(3¢-1) G, + BeL(bey1) G, = 0

(25)
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Thanks to the recurrence relation for hypergeometric functions, these
coupled PDEs can be solved iteratively:

- 2p
_ zz b..c _
GP(z,3) = E c8 Faelerce z,Z7).
e ( ) ) JE—— m,n A+I;rp/2+m7A—/;rp/Q_(p+1)+n( ) )
(m,n)€Oct?

where non-vanishing constant cg, , distribute in octagon Oct(ep).

Remarkably, we can perform analogous term-wise gauge transformation
to map above into:

1
wgp)(u, o) = [sinh(u + &) sinh(u — 7)]%P Z Cs””w;ifi’ffiﬁ”(u’ o),
(m,n)GOct(ep)
(26)
i. e. the eigenfunctions of BC, Calogero-Sutherland system form a
complete basis for expanding other conformal blocks.
In 2d, similar linear expansion of spinning conformal blocks in terms of

scalar conformal blocks also occurs. [0sborn 12]
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Future Directions

Exact eigenfunctions (Koornwinder polynomials) and construction of
other conformal blocks as series expansion in arbitrary d-dimensions.

Can we diagonalize spinning blocks now linearly expanded in terms
of scalar conformal block/CS eigenfunctions?

If so, what kind of quantum integrable systems do they correspond
to? If at all? How do they relate to one another?

Superconformal blocks and quantum integrable systems?

Is this connection with quantum integrable system accidental? Via
AdS/CFT, can we see similar structures in gravity side?
2 points — 3 points — 4 points?
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