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AdS3/CFT2 correspondence

A new window to study AdS/CFT without resorting to string theory

I =
1

16πG

∫
d3x
√
−g(R +

2

l2
)

3D AdS3 Einstein gravity is special: No locally dynamical d.o.f

In 1986, Brown and Heanneaux: there exists boundary d.o.f.
More precisely they found that under appropriate boundary conditions the
asymptotic symmetry group (ASG) of AdS3 Einstein gravity is generated
by two copies of Virasoro algebra with central charges

cL = cR =
3l

2G

In modern understanding: quantum gravity in AdS3 is dual to a 2D CFT
at AdS boundary
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AdS3/CFT2: a perfect platform

AdS3 gravity is solvable: all classical solutions are quotients of AdS3 such
that a path-integral is possible in principleE. Witten (1988) ...

In the first order formulation, it could be written in terms of
Chern-Simons theory with gauge group SL(2,C ), therefore it is of
topological nature

2D conformal symmetry is infinitely dimensional so that 2D CFT has
been very well studiedBelavin et.al. (1984) ...

However, it is not clear

1. how to define the quantum AdS3 gravity?

2. what is the dual CFT?
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Semiclassical AdS3 gravity

Let us focus on the semiclassical gravity, which corresponds to the CFT
at the large central charge limit

c =
3l

2G

I The partition function gets contributions from the saddle points

I For each classical solution, its regularized on-shell action ∝ 1/G ∼ c

I 1-loop determinant of the fluctuations around the configurations
∝ O(1)



Semiclassical solutions

Rµν = − 2

l2
gµν ,

I All solutions are locally AdS3

I More precisely, all classical solutions could be obtained as the
quotients of global AdS3 by the Kleinian group, a discrete subgroup
of PSL(2,C )

M = AdS3/Γ

I It is often convenient to work in Euclideanized version, in which H3

is the Euclideanized AdS3 with the metric

ds2 =
l2

r2
(dzdz̄ + dr2)

I At the boundary r → 0, we have the Riemann sphere Ω
I The action of SL(2,C ) on Ω is a Mobius transformation

z → az + b

cz + d
, a, b, c , c ∈ C , ad − bc = 1
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Handlebody solutions

Among all the solutions, the so-called handle-body solutions are of
particular importance, and have been best understood.
The handlebody solution is homeomorphic to a domain enclosed by the
closed surface
The non-handlebody solutions are much less understood (unstable?)

We will focus on the handlebody solutions
For the handlebody solutions, the subgroup Γ is a Schottky group, a
finitely generated free group, such that all nontrivial elements are
loxodromic (

a b
c d

)
∼
(

p1/2 0
0 p−1/2

)
, 0 < |p| < 1

On the boundary, there is a compact Riemann surface, which could be
determined by the Schottky uniformization ”Retrosection theorem” by Koebe (1914)
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Schottky group

The loxodromic element Li (L−1
i ) maps Ci to C ′i such that the

outer(inner) part of Ci is mapped to the inner(outer) part of C
′

i . The
elements {Li} freely generate the Schottky group



On-shell regularized action

I With respect to a Schottky group, there is a handle-body
gravitational solution

I The essential point is that the on-shell regularized bulk action of
gravitational configurations in pure AdS3 gravity is a Liouville type
action defined on the fundamental regionK. Krasnov (2000),Zograf and Takhtadzhyan (1988)

SZT [φs ] = − c

24π

∫ ∫
D

i

2
dz∧dz̄

(
4∂zφs∂z̄φs +

1

2
e2φs

)
+boundary terms.

I It is remarkable that the ZT action captures the whole leading
contribution in the CFT partition function on boundary Riemann
surface in the large c limit.



1-loop correction
I Consider the fluctuations around the gravitational configuration and

compute their functional determinants

I 1-loop partition functionGiombi et.al. 0804.1773, Yin 0710.2129

Z 1−loop =
∏
γ∈P

∏
s

∞∏
m=s

1

|1− qmγ |
.

Here the product over s is with respect to the spins of massless
fluctuations and P is a set of representatives of primitive conjugacy
classes of the Schottky group Γ. qγ is called the multiplier of γ ∈ Γ,

whose two eigenvalues are q
±1/2
γ with |qγ | < 1.

I P = {non-repeated words up to conjugation}, e.g.

P = {L1,L2,L−1
1 ,L−1

2 ,L1L2 ∼ L2L1, ...}

I Difficulty: infinite number of words

I This formula was first conjectured by Xi Yin, and later has been
derived by using the heat kernels and the method of images.

I Our work is to prove this relation in the dual CFT.



Motivation

I Our motivation comes from the study of holographic Rényi entropy

I In 2D CFT, the Rényi entropy is determined by the partition
function on a higher genus Riemann surface Σn.

I Holographically, from AdS3/CFT2 correspondence, the partition
function is captured by the partition function of the corresponding
gravitational configuration Bγ such that ∂Bγ =Mg

I Picture: in the large c limit, the leading term in CFT partition
function should be equal to the on-shell regularized action, and the
next-to-leading terms should correspond to 1-loop correction



Motivation II

This picture turns out to be correct in the classical level, and leads to the
proof of the Ryu-Takayanagi formula for the holographic entanglement
entropy under some reasonable assumptionsT. Hartman 1303.6955, T. Faulkner 1303.7221

Accumulated evidence shows that this is also true beyond the classical
level

1. double-interval case Barrella et.al. 1306.4682,BC et.al. 1312.5510

2. single interval on a torus Barrella et.al. 1306.4682, BC and J.q. Wu 1405.6254,1507.00183

3. large single interval on a torus BC and J.q. Wu 1506.03206
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Project

Prove the 1-loop correction from dual CFT:

Z 1−loop =
∏
γ∈P

∏
s

∞∏
m=s

1

|1− qmγ |
.

Not only for the configurations appearing in the computation of HRE,
but for any handle-body solutions.



Partition function on a genus-g RS
It can be computed using the sewing prescription, following Segal’s
approach to CFT. It is defined to be the summation of 2g -point
functions on the Riemann sphereM.R. Gaberdiel et.al. 1002.3371

Zg =
∑

φi ,ψi∈H

g∏
i=1

G−1
φiψi
〈

g∏
i=1

φi [Ci ]ψi [C
′
i ]〉D ,

φi , ψi are the states in the Hilbert space H, and φi [Ci ] denote the states
associated with the boundary circle Ci . Gφψ is the metric on the space of
the states



Partition funciton on Σg

Via state-operator correspondence, the states can be transformed to the
vertex operators inserted at the fixed points. With the vertex operators,
the partition function is changed to the summation over 2g -point
functions of the vertex operators inserted at 2g fixed points

Zg =
∑

φi ,ψi∈H

g∏
i=1

G−1
φiψi
〈

g∏
i=1

V (U(γi )p
L0

i φi , ai )V (U(γi γ̂)ψi , ri )〉,

This relation could be understood in the following way: one can insert a
complete set of states in the Hilbert space at each pair of the circles Ci

and C ′i , which are related by the Schottky generator Li , and compute all
the possible 2g -point functions of corresponding vertex operators on the
Riemann sphere.

This prescription could be applied to any CFT, but is most effective to
read the next-to-leading terms in the large c CFT.



Vacuum module

In the CFT dual to pure AdS3 gravity, the vacuum module dominates the
partition function in the large c limit T. Hartman 1303.6955,...

The vacuum module is generated by the Virasoro generators acting on
the vacuum.

Let’s focus on the holomorphic sector

[Lm, Ln] = (m − n)Lm+n +
c

12
m(m2 − 1)δm+n,

The vacuum module
...Lrn−n...L

r3
−3L

r2
−2 | 0〉,
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Vacuum module in the large c limit I

In the large c limit, the vacuum module is simplified significantly.
We can renormalize the operators

L̂m = | 12

cm(m2 − 1)
| 12 Lm for |m| ≥ 2,

A general state in the vacuum module could be of the form

∞∏
m=2

L̂rm−m | 0〉,

with only finite number of rm’s being non-zero.
Now different states are orthogonal to each other to the order c0.

We may define the “particle number” for such a state to be r =
∑

rm.
The physical reason behind this definition is that each single-particle
state L̂−m|0 > corresponds to one graviton.
The single particle state is of particular importance in the following
discussion
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Vertex operators

For a single-particle state L̂−m|0 >, its corresponding vertex operator is
of the following forms at the origin and the infinity respectively

Vm = (
12

cm(m2 − 1)
)

1
2

1

(m − 2)!
∂m−2T (z) |z=0,

V̄m = (
12

cm(m2 − 1)
)

1
2

1

(m − 2)!
(−z2∂z)m−2(z4T (z)) |z→∞ for m ≥ 2.

At the origin, the normalized vertex operator for the particle-r state reads

Ô =: (
r∏

j=1

Vmj ) :

In other words, the vertex operator of a multi-particle state is just the
normal ordered product of the vertex operators for the single-particle
states.

The important point is that this fact is even true for the states on the
circle not around the origin.



Partition function on Σg in the large c limit

Recall that the partition function on Σg is

Zg |z=
∑

m1,m2,...mg

〈 L1Ō(1)
m1

O(1)
m1

L2Ō(2)
m2

O(2)
m2

... Lg Ō(g)
mg

O(g)
mg
〉,

where m1,m2, ...mg denote the summation of all of the states on the
circles C1,C2, ...Cg and C ′1,C

′
2, ...C

′
g .

In the large c limit, the leading contribution in the correlation functions is
of order c0

Moreover, it is dominated by the product of two-point functions of
single-particle states

Holographically, this means that we can ignore the interaction of the
gravitons, and have a free theory of the gravitons

Every 2g -point function in the partition function could be decomposed
into the summation of the products of g two-point functions in all
possible ways.



Genus-1 partition function: revisited

I For the large c CFT, the genus-1 partition function is

Z1 =
∞∏

m=2

1

1− qm
,

where q is the modular parameter of the torus.

I In the torus case, the Schottky group is generated by only one
SL(2,C ) element L.

I The genus-1 partition function could be read from

Z1 =
∞∑
r=0

1

r !

∑
{mj}

〈: (
r∏

j=1

LV̄m(r1)) : : (
r∏

j=1

Vm(r1)) :〉+ O(
1

c
)



Genus-1 partition function: I

I For r = 0 term, the contribution from the vacuum is 1.

I For r = 1 term

Z (1) =
∞∑

m=2

〈LV̄m(r1)Vm(a1)〉 = TrH1q
L0 =

∞∑
m=2

qm,

I For r > 1 case, the expectation value equals to

1

r !

∞∑
mi=2

〈: LV̄m1 (r1)LV̄m2 (r1)...LV̄mr (r1) :: Vm1 (a1)Vm2 (a1)...Vmr (a1) :〉

=
1

r !

∞∑
m1=2

∞∑
m2=2

...

∞∑
mr=2

∑
{P}

〈LV̄mP1
(r1)Vm1 (a1)〉

·〈LV̄mP2
(r1)Vm2 (a1)〉...〈LV̄mPr

(r1)Vmr (a1)〉+ O(c−1),

There is no two-point function between two V operators or two V̄
operators at the same fixed point because of normal ordering.



Figure: The link formed by the product of four two-point functions. It
corresponds to the conjugacy class L4. Due to the normal ordering, the only
possible connected link is the one in the diagram.



Diagram language

I To classify the possible combination of two-point functions in the
summation clearly, we define a diagram language.

I The dotted vertices denote the fixed points, where the operators are
inserted: the lower ones are the Vm(a1)’s, while the upper ones are
the LV̄m(r1)’s.

I The dashed lines denote the summations over mi ’s and the solid line
denotes the correlation between two vertex operators.

I The dashed and solid lines may form a closed contour, which will be
called a link.

I In short, a link is defined by certain product of two-point functions
of single-particle operators.

I The expectation value of a link is reduced to a two-point function,
which is determined by the multiplier of a Schottky group element.

I It is convenient to assign a direction on the dashed line indicating
the flow between V to V̄ .



Genus 1 partition function: continued

For the partition function, we just need to sum over all the contributions
from different combinations of the links

Z1 =
∞∑
t=0

∞∏
s=1

1

st
1

t!
(
∞∑
r=2

qsr )t = exp
∞∑
r=2

− log(1− qr ) =
∞∏
r=2

1

1− qr
.

This is the genus-1 partition function found by Maloney and Witten
(2007).



Genus 2 case

I The partition function could be written as

Z2 =
∑
m1,m2

〈 L1Ō(1)
m1

O(1)
m1

L2Ō(2)
m2

O(2)
m2
〉

where m1,m2 are over all possible states in the vacuum module.

I For the multi-particle states, every operator Omi could be
decomposed into the product of the operators corresponding to the
single-particle states.

I However, there are now more possibility for the operators to
combine.



(a) The link corresponds to L1 and L2. (b) The link corresponds to L1L2.

Figure: In the diagram, the same type of vertices means that the operators are
in the fixed points of the pairwise circles in the Schottky uniformization. The
two-point function between the operators on the same type of vertices just give
the simplest link. The one between the operators on different types of vertices
may lead to more complicated links.



(a) The link corresponds to L1L−1
2 . (b) The link corresponds to L2L−1

1 .

Figure: Two links with opposite orientations. The corresponding conjugacy
classes are inverse to each other, but they have the same multiplier.



More complicated links

(a) The link corresponds to L2
1L

−1
2 L3. (b) The link corresponds to L−1

3 L2L−2
1 .

Figure: More complicated links with three generators.



Links and conjugacy classes

I An oriented link is in one-to-one correspondence with the conjugacy
class of the Schottky group.

I The expectation value of a link is determined by the multiplier of the
conjugacy class.

I A primitive conjugate element is the one which cannot be written as
the positive power of another element, i.e. L(primary) 6= (L′)n, n ∈ N.
It corresponds to the primitive link which cannot be written as the
positive powers of a shorter link.
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1-loop partition function from CFT

I First of all, there is an one-to-one correspondence between the
primitive link and primitive conjugacy class in the Schottky group.
By considering all possible links, there is no missing in counting the
primitive elements.

I Moreover, notice that the 1-loop partition function could be
expanded

Z1−loop =
∏
γ

Zγ =
∏
γ

( ∞∏
m=2

1

1− qmγ

)
,

and furthermore

∞∏
m=2

1

1− qmγ
=
∞∑
t=0

1

t!

∞∏
s=1

1

st
(
∞∑

m=2

qsmγ )t .

I Therefore the 1-loop partition function could be expanded into a
summation of the contribution from all possible links.



One subtlety
I The above discussion is focused on the holomorphic sector.

I The anti-holomorphic sector should give the same contribution.

I Mismatch?

I However, the computation in the CFT cannot distinguish the link
with different orientation, though we may set up the one-to-one
correspondence between the oriented links and conjugacy classes.

I On the other hand, q
−1/2
γ should be the larger values of the

conjugacy element so that it is actually the same for both γ and γ−1.

I Therefore a more precise relation is

Zg |holomorphic =
∏
γ

(Zγ)
1
2

I This saves us from double counting.

I The full partition function

Zg =
∏
γ

|Zγ |.
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Conclusion

We reproduced the 1-loop partition function for the handle-body
solutions of AdS3 gravity from dual CFT partition function

I We used the sewing technique to compute the CFT partition
function on the compact Riemann surface

I The partition function is encoded by the 2g -point functions on the
Riemann sphere.

I These multi-point functions are at most of order c0. At leading
order every 2g -point function could be reduced to the products of
the two-point functions of single-particle operators.

I By considering all possible ways to contract the operators and form
the links, the 1-loop partition function has been reproduced.
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Remarks

I The proof relies on the essential fact that the dual CFT in the large
c limit is effectively free.

I Two-point function of single-particle states dominates,
correspondingly the massless graviton is freely propagating and the
interaction among gravitons can be ignored.

I Certainly, this should be the case since the 1-loop gravitational
partition function is only given by the functional determinant of the
free massless graviton.

I As an implication, we proved that the next-to-leading term in Rényi
entropy is captured by the 1-loop quantum correction to the
corresponding gravitational configuration
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Thanks for your attention!
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